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NORMAL CLOSURE OF ONE-VARIABLE EQUATIONS

IN FREE GROUPS

C. SIBERTIN-BLANC1

Abstract. Let w(x) be a one-variable equation in a free group F of finite rank.

Lyndon has proved that it is possible to associate effectively to w(x) the set of its

solutions, whereas Appel and Lorenc have provided a simpler representation of the

set inferred. In this paper, we invert the problem and demonstrate that if the

elements of any set S c F are solutions of an equation w(x), then w(x) belongs to

the normal closure of finitely many short equations associated to S. A few

consequences are given.

Let F be a free group of finite rank. A one-variable equation on F is any element

of the free group F+<x>; such an equation will be written as follows in its reduced

form: w(x) = c,xeic2xe2 • • • c,x\+x, with c, G F, e, G (-1, 1), / G N. The c, are

called the coefficients of w(x), t is called the degree of w(x) and M, twice the

maximum of the lengths of the c¡, is called the size of w(x). A solution of w(x) is

any element u of F such that w(w) = 1.

In what follows, a parametric word2 on F is an expression such as U = dSah, in

which a is a parameter, d, S and h belong to F and S is cyclically reduced and not

a proper power (i.e. S = g" leads to n = ± 1). A value of U is the element of F

resulting from substituting integer value for a.

Appel [1] has shown the following result (we keep the preceding notations):

Theorem A. The set of solutions of any equation on a free group is the union of:

(A) A finite set of solutions whose lengths are < 4M.

(B) For a finite set of parametric words, the set of values of those parametric words

such that \S"\> (t + 6),M,n > 0.

In both cases, it is easy to find short equations accepting these solutions:

The shortest equation accepting « G Fas a solution is wx_1.

The shortest equation accepting infinitely many values of the parametric word

U = dSah as solutions is m(x) = dSd~xxh'xS-xhx~x.

The following proposition is obvious:
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Proposition 1. Let w(x) and w'(x) be equations on F such that w'(x) belongs to

the normal closure of w(x) (in the free group Ft<x)). Then the solutions of w(x) are

solutions of w'(x).

The reverse of this proposition is not true (for instance consider u(x)2 and u(x)3).

However it is correct if we keep to the two types of short equations mentioned

previously, that is to say we have the two following theorems:

Theorem 1. Let w(x) be an equation on a free group F and w a solution of w(x).

Then w(x) belongs to the normal closure of cox-1.

Proof. Let ax, . . . , a„ be free generators of F, a G F and x $. F. Since

ax, . . . , an, x are free generators of F+<x>, F admits the presentation

(a,, . . . , an, x; ux~x = 1). Then, for any element w(x) of F+<x>, we have w(u>) =

1 iff w(x) belongs to the normal closure of ux~x.

Theorem 2. Let w(x) be an equation on a free group F. Let U = dSah be a

parametric word on F whose infinitely many values are solutions of w(x). Then w(x)

belongs to the normal closure of u(x) = dSd~xxh~xS~xhx~x.

We call a nonempty subset 5 of F a solution set if there exists any equation w(x)

on F such that S is the set of solutions of w(x). Let Es be the normal subgroup of

F+(x} made up of equations whose set of solutions contains S. We do not know if

there are other partial converses to Proposition 1 than Theorems 1 and 2: if Es is

generated-as a normal subgroup-by a single element, must 5 either have one

single element or be the set of values of a parametric word? Is F,(x}/Es at least

finitely presented?

The proof of Theorem 2 given below is due to the referee, Roger C. Lyndon. The

proof of the author was more complicated: it studies, by a combinatorial way, the

manner of doing cancellations which permit to come to 1 from the word w(dS"h),

where n is "great"3. Both these proofs are constructive inasmuch as they give the

possibility of writing w(x) in a basis of the normal closure of u(x).

We note CN(g) the normal closure of any element g of a group G. Define

wx(x) = w(dxh) and ux(x) = u(dxh) = dSxS~xx~xd~x. Then "infinitely many val-

ues of the parametric word dS"h are solutions of w(x)" is equivalent to "wx(S") =

1 for infinitely many «" and w(x) G CN(u(x)) is equivalent to wx(x) G CN(u(dxh))

= CN([S, x]). Thus Theorem 2 is equivalent to

Proposition 2. Let w(x) be an equation on a free group F and let S G F be

cyclically reduced. If w(S") = 1 for infinitely many integers n, then w(x) G

CN([S, x]).

The following results from a lemma of Appel [1].

3The ground lemma of this proof is the following (= denotes the equality between words): Let W be

a word on the generators of a free group F such that W = 1. Then there exist two words Wx and W2

such that either (1) W =WXW2 where W, - W2 = 1 or (2) W = WX W2WX ' where W2 is of the kind
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Lemma 1. Let a, c E F, a cyclically reduced. Then there exists N > 0 such that,

for all n> N:
(1) a±nc anda±"ca±" begin with a±x;

(2) ca±n and a±nca±n end with a    ;

(3) if[a,c]¥^ 1, then a±ncaJh" begins with a±x and ends with a""1.

Corollary 1. Let w(x) = cxxe'c2xei . . . x\+x, t > 1, c, G F, e, = ±1. Let a E

F be cyclically reduced and, if -e,_, = e„ assume that [a, c¡] ¥= 1. Then there exists

L > 0 such that, for all \n\ > L, w(a") ¥= 1.

Proof. Let L be twice the upper bound of the N defined by the lemma. If

\n\ > L, any occurrences of a" in w(a") can cancel entirely. Thus w(an) ^ 1.

Proof of Proposition 2. Let w(x) = c,x£lc2xe2. .. xV,+1 such that w(S") = 1

for infinitely many n. We can not have / < 1 unless w(x) is the empty word, and

we will argue by induction on / if / > 2. By the corollary, some e,_, = -e, and

[S, c¡] = 1; thus there exists some integer p such that c, = Sp, and we have

[S*", Cj] = 1. Define wx(x), w2(x) and w'(x) such that w(x) = w1(x)x£'-|c,xe'W2(x)

and w'(x) = wx(x)CiW2(x) of degree /' < / - 2. Since S«-'"c,.S*" = c» w'(S") =

w(S") = 1 for infinitely many n and w'(x) E CN([S, x]) by induction. Now w(x)

= w'(x)w2x(x)[S-p, x*<-<]w2(x) belongs to CN([S, x]).

Theorem 2 shows that if infinitely many values of a parametric word are

solutions of an equation, then all its values are solutions. This leads to the

following refinement of Appel's theorem referred to at the beginning of this paper,

obtained by Lorenc [2]:

Corollary 2. The set of solutions of any equation on a free group is the union of:

(A) A finite set of solutions whose lengths are < 4M;

(B) for a finite set of parametric words, the set of all the values of these parametric

words.

Corollary 3. Let F be a free group and S c F. Then the subgroup Es of F„<x>

of equations whose set of solutions contains S is recursively enumerable. (That is to

say we are able to provide a list of the elements of Es.)

Proof. Es i= {1} iff there exist two finite sets (w,; / = 1, . . . , k, w,E F] and

{ U¡: = djSfhj-, i = k + 1, . . . , /, and U¡ parametric word on F) such that S c

(co,-; / = 1, . . ., k) u {djSfhi; i — k + 1,...,/,« G Z}. We can suppose (to,-; / =

1, . . . , k) c S as well as [n: í^S/Vi, G S) is infinite for every i, i = k + I, . . . , I.

According to Theorems 1 and 2, Es is the intersection of the normal closures of the

equations u¡(x) = u>¡x~x, i = 1.k, and u¡(x) = diSidi~xxh~xSi~xhix~x, i = k

+ 1, . . . , /. By listing the elements of F, we can number the elements of each of

these normal closures and define recursive functions f¡, i = \, . . . , I, so that the

number of any w(x) of CN(u¡(x)) is majored by f¡(\w(x)\). Then we are able to give

a list of the intersection of these normal closures.
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Now consider the set ££ of the equations whose set of solutions is strictly S. For

providing a list of ££ we must take out of Es the equations whose solutions are not

all in S. If ££ is not empty, there exist as below two sets such that S = (to,; i =

1, . . . , k) u {diSph/-, i - k + 1,.. ., /, « G Z}. Let w(x) G F,<x> have size M

and let fl = {co G F; |co| < 4M} \ {co,.; i = 1.k) and

% = { U = i/SaÄ; ¿7 parametric word on F,

|</5ft| < 5M}\{Ui;i = k + 1,...,/}.

According to Appel, any solution of w(x) must either belong to ß or be a value of a

parametric word of % or belong to 5. Thus w(x) lies in ££ iff w(x) G

D, CN(u¡(x)) and w(x) £ U a CA^co^x) uU„rt CN(dSd-xxh-xS-xhX-x).

This second condition, as well as the first one, is decidable. This proves the

following:

Corollary 4. Let F be a free group and S G F. Then the subset of F+<x> of

equations whose set of solutions is strictly S is recursively enumerable.

Here are two propositions related to elements which belong to a set of free

generators of F^<x>, called primitive elements of F.„<x>. For this, we will refer to

the two following lemmas, due to Magnus and to Steinberg, and mentioned in [4, p.

107]. F' denotes the derived group of F.

Lemma M. If F is a free group and the normal closure in F of an element q contains

some primitive element p, then q is conjugate to p or to p~x.

Lemma S.4 Let p and q be primitive elements of a free group F. If the intersection of

their normal closures is not contained in F', then q is conjugated top or top~x.

Proposition 3. A power of any primitive element of F+<x> has one solution in F at

most.

Proof. Let w(x) be primitive and co G F such that vv(co) = 1. According to

Theorem 1, w(x) belongs to the normal closure of cox-1. Since w(x) is a primitive

element, it is conjugated to x_1co or to co-1x. Thus co is the only solution of w(x).

Proposition 4. Any equation on a free group F which has two solutions at least lies

in F„<x>'.

Proof. By Theorem 1 and Lemma S.

We may notice that there are primitive elements without solution, as well as

there exist equations in F,<x>' which have one or zero solution; let F be the free

group freely generated by a and b; then axbx~x is primitive without solution,

[a, x][a, b] has no solution and the empty word is the only solution of [x, axbxb~'].

4This lemma is badly enunciated in [4] where it is not stated that/) and q both have to be primitive;

but this lemma becomes false if q is not primitive: q = p2 is conjugate neither top nor to/)-1. See [5].
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