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RECURSIVELY SATURATED MODELS

OF SET THEORY

JOHN STEWART SCHLIPF1

Abstract. We determine when a model 90? of ZF can be expanded to a model

<SW, %y of a weak extension of Godel Bernays: GB + the A] comprehension

axiom. For nonstandard W, the ordinal of the standard part of ÜR must equal the

inductive closure ordinal of SK, and 2J? must satisfy the axioms of ZF with

replacement and separation for formulas involving predicates for all hyperelemen-

tary relations on SK. We also consider expansions to models of GB + 1\ choice,

observe that the results actually apply to more general theories of well-founded

relations, and observe relationships to expansibility to models of other second

order theories.

In this paper we consider when a model 3ft of ZF (Zermelo-Fraenkel set theory)

can be expanded to a model <3ft, 9C > of a weak set-and-class theory-stronger than

GB (Gödel-Bernays) but much weaker than MK (Morse-Kelley). Thus 9C will be a

collection of classes-a collection of subsets of 3ft.

We shall consider <3ft, 9C > to be a Henkin model for second order logic. Thus

second order (capital letter) variables vary over classes-elements of 9C-and first

order (small letter) ones, over sets-elements of 3ft. A formula is said to be first

order if it contains no class quantifiers-it may have class parameters. So a 2¡

formula is a formula of the form 3X<p(X, Y, z), where <p is first order. (We actually

wish to allow a sequence of class parameters Y and a sequence of set parameters z,

but we include only one of each for simplicity of writing. We follow this conven-

tion henceforth.) A TL\ formula is one of the form VX<p(X, Y, z) for first order <p.

We say 7 Ç 3ft is A¡ definable if it is definable in <3ft, 9C> by both 2] and n¡

formulas. We say <9ft, % > 1= A{ CA (Aj comprehension axiom) if every A¡ definable

subset of 3ft is an element of %. (This can be expressed with an obvious axiom

scheme.) We ask when 3ft N ZF can be expanded to a model <3ft, 9C > t= GB + Aj

CA. That the problem is not trivial is suggested by the following two well-known

results: If 3ft N ZF and % is the collection of definable subsets of 3ft, then

<3ft, 9C> N GB. And if <3ft, %> N MK, 3ft N Con(ZF). (For this we need only that
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<SDÎ, 9C> h GB + Aj CA + a IT} foundation scheme.) Moschovakis, in [1971], dis-

cusses a theory that looks very similar to ours-GB + Aj CA + schemes asserting

that every n¡ or Ej definable class has a minimal element-and proves noticeably

different results.

This paper generalizes results in Barwise and Schlipf [1976] to models of ZF. The

techniques in this paper, however, can easily be applied to that paper to yield two

improvements: first, we deal with Aj CA instead of the more complicated, and

apparently stronger, essential Aj CA. And second, in noting the connection with

Theorems 6, 7 and 8, we observe that GB + A¡ CA is in some sense a maximal

"conservative extension for sentences about sets" of ZF (thus giving a mathemati-

cal justification for looking at that theory). The same proofs give essentially the

same results for Peano arithmetic plus the foundation axiom VX3y (y is the least

element of X or X = 0).

In fact, the methods are mostly quite general and can be applied to any structure

29? with a partial ordering < (which we wish to make look like a well-founded

relation) and an inductive pairing function (apparently a technical necessity) to see

whether there is a nonempty set % of subsets of 2R so that <5D?, 9C>t=AJ

CA + VX3y (y is a < - minimal element of X or X n field(<) = 0). (If the

pairing function is not definable, but still inductive, we may have to take 9C G 9ft*

for some integer k.) Adding the GB axioms only complicates matters: the founda-

tion axiom above is provable in GB, but there we must worry about the compre-

hension and replacement axioms. The reader can easily modify the results for

either of the above two cases. Peano arithmetic is noticeably simpler in that all

nonstandard models are non-w-standard.

Some similar theorems were proved roughly at the same time by Bielinski, who,

in [1977], published results analogous to Theorems 3, 4, 5, 7, and 8. He followed the

paper (Barwise and Schlipf [1976]) closely and thus missed the two improvements

of this paper over the Barwise-Schlipf approach noted above. (Accordingly, he was

able to use the Moschovakis result cited as a weaker form of Theorem 1 [1974,

Theorem 7F.1] plus the Barwise-Schlipf proof rather than proving Theorem 1

itself.) He does not seem to have observed, as we did in the paragraph above, that

Theorems 3 through 8 actually hold in great generality, whereas here we con-

centrate upon the set theory case-which seems the most interesting example after

Peano arithmetic-to simplify the paper.

Our basic tools are Theorems 1 and 2, below.

Theorem 1 [Kleene for the integers; Moschovakis for acceptable struc-

tures; Harrington-Kirousis-Schlipf in this generality]. Let Wl be a structure

with a definable pairing function. Then the smallest nonempty set % of subsets ofSSR

such that <9ft, % ) N Aj CA is the set of hyperelementary subsets of 9ft. (See

Harrington, Kirousis and Schlipf [1978] for the proof.)

Definition. Let kw denote the inductive closure ordinal of 9ft.

One half of Theorem 1-that the hyperelementary subsets of 9ft really do give a

model of Aj CA-follows from the generalized Barwise-Gandy-Moschovakis result
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that, over any structure 3ft with an inductive pairing function, the set of hyperele-

mentary subsets of 3ft is just the set of subsets of 3ft in the next admissible set-and

thus the result follows by A, comprehension in admissible sets. By the same results

kw is just the ordinal of the admissible set. (See Barwise, [1975, Chapter VI], for the

general results.) (This is the only place in the general treatment that we need to

know that 3ft has an inductive pairing function.)

Definition. L(a) is the set of sets constructible by ordinal a. For A a transitive

set, tA is the infinitary language £M n A.

We shall also use the following result:

Theorem 2. Let "¡SI be a structure with an inductive pairing function. The set of

hyperelementary subsets o/3ft is just the set of subsets o/3ft definable in the language

EX*™) (with parameters from 3ft). (This follows from Corollary 11.5.6 of Schlipf

[1977].)

Definition. Let % Stm denote the set of hyperelementary subsets of 3ft.

Definition. For A a transitive set, let ZF^ denote the ZF axioms with replace-

ment and separation axioms for all formulas in tA.

Theorem 3. Let 3ft N ZF. The following are equivalent:

(i)39C<3ft, %}VGB + A¡ CA,

(ii) <3ft, %&w) 1= GB + Aj CA,

(iii) 3ft 1= ZFL(K*,y

Proof, (ii) => (i) vacuously, and that (i) => (ii) is easy to check, for A¡ CA always

holds in SCSsm, and the class formation axioms of GB follow from that, while the

rest of the axioms of GB follow easily from DCS^'s being a subset of any such 9C.

That (ii) => (iii) is immediate from Theorems 1 and 2—it is just the separation and

replacement axioms of GB. For (iii) => (ii) we need only check the GB part, by

Theorem 1, and that is just what (iii) asserts.    □

We get extra information about the non-well-founded examples.

Theorem 4. Let 3ft N ZF be non-well-founded; ß = ord(well-founded part of 3ft).

Suppose 39C<3ft, 9C> N GB + Aj CA. Then ß = kw.

Proof. Clearly ß < kot. But if ß < k™, then the well-founded part of 9ft is

hyperelementary, and its complement has no minimal element, violating founda-

tion.    □

It is an obvious guess that if 3ft 1= ZF and the ordinal of the well-founded part of

3ft is kw, then 9ft can be expanded to a model of GB + Aj CA. But this is false-at

least under a suitable nontriviality condition, such as there existing a standard

model of ZF. The guess is obviously true if k™ = w (by Theorem 3). But also by

Theorem 3, if 9ft is so expandable and k®* > <o, then 9ft \= 3a(R(a) <e^9ft) (which

is a perfectly good sentence of ££(wf*)). This fails in the minimal model of ZF. By

Barwise compactness, it also fails in a model the ordinal of whose well-founded

part is uxk, and, also by Barwise compactness, we can choose such an 9ft with

kto = «¡* (See Ressayre [1977, Proposition II. 1] or Schlipf [1978, Theorem 3.3] for

this last construction.)
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Definition. Let Dfa(W) denote the subsets of 9ft definable by E^ formulas

(with parameters from 9ft).

By combining the methods of Theorems 3 and 4 we get:

Theorem 5. Suppose <9ft, 7)/0(9ft)> t= G7i + Aj CA, 9ft non-well-founded. Then the

ordinal of the well-founded part o/9ft = kw = a.

Theorem 6. GB + Aj CA is a conservative extension of ZF for sentences about

sets; i.e., if <p is a formula containing only set variables and GB + Aj CA h <p, then

ZF h <p. Similarly, for each countable admissible ordinal a, GB + Aj CA + the

assertion that for each ß < a, the model is ß standard, is a conservative extension of

ZFU<*Y

Proof. For the first part we note that every model of ZF has a recursively

saturated elementary extension-thus an elementary extension 9ft where Km = a,

and hence an elementary extension expandable to a model of GB + Aj CA. The

second part is similar.   □

We are now ready to consider the mathematical justification of looking at the

specific theory GB + Aj CA. This we argue on the basis of the theory's nice model

theory. We already know that GB + Aj CA is a conservative extension of ZF for

sentences about sets. Theorem 6 will tell us that it also is a maximal conservative

extension in the following sense: for a countable non-w-standard model 9ft of ZF,

while expandability to a model of GB + Aj CA has no first order (£„„) conse-

quences-telling us only something about the model-theoretic structure of 9ft, the

additional consequences of expandability to a stronger r.e. theory T are all first

order. For countable, non-well-founded 9ft whose standard part has ordinal a we

get an analogous result: the L(a) consequences of GB + Aj CA not involving class

variables are just the consequences of the fairly obvious theory ZFL(a), while the

additional consequences of stronger L(a)-r.e. theories are all expressable by L(a)-

r.e. theories without class variables.

Theorem 7 is a special case of a theorem proved independently by Barwise and

Ressayre. Theorem 8 is a special case of a theorem of Ressayre.

Theorem 7 [Barwise and Ressayre, independently]. Let 9ft be countable,

9ft N ZF. Suppose that the next admissible set above 9ft has ordinal w (i.e., since we

just said 9ft N ZF, k3" = u). Let T be an r.e. theory of models (%l, % ) of some theory

of sets and classes. Suppose 9ft satisfies all first order consequences of T (not involving

class variables). Then 9ft can be expanded to a model <9ft, % ) N T.

(A proof can be found in Theorem II.4 of Ressayre [1977]; another can be found

in Theorem II. 1.1 of Schlipf [1977]. The next theorem is a special case of Theorems

II.4 and III.4 of Ressayre [1977].)

Theorem 8 [Ressayre]. Let 9ft be countable, 9ft N ZF. Suppose the next admissible

set above 9ft has ordinal a (i.e., in this case, that kw = a). Let T be a 2 theory of

L(a) of models (31, ^ ) of some theory of sets and classes. Suppose 9ft satisfies all

L(a) consequences (with no class variables) of T. Then 9ft can be expanded to a model

ofT.
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Thus, for T a theory with GB + Aj CA G T, we can think loosely of factoring T:

GB + Aj CA is the part of T that tells us about structural properties of the

countable models, and the rest of the theory is the part that tells us about first

order consequences.

An obvious question arises here: what is the strength of the (set theoretic) axiom

asserting that there is an a-standard model of GB + Aj CA? For the case a = w

this is just equivalent to the assertion that ZF is consistent, for if ZF is consistent, it

has a recursively saturated model 9ft, which can be expanded to a model of

GB + Aj CA since k3" = <o. Similarly, for countable a, the assertion that there is an

a-standard model of GB + Aj CA is equivalent to the assertion that the infinitary

theory ZF¿(a+) is consistent, for a+ the least admissible greater than a. The

assertion that there is a well-founded model of GB + Aj CA is obviously much

stronger. For example, if some %, (L(a), 9C> 1= GB + Aj CA, then, for a+ the

least admissible above a, for all ß < a, all subsets of ß in L(a+) are also in L(a).

On the other hand, the assertion that there is a well-founded model of GB + Aj

CA-in fact, that there is a standard model of Morse-Kelley-is known to follow

from the existence or an inaccessible cardinal or a cardinal inaccessible in L.

These results give special emphasis to an obvious program: to look at various

theories extending GB + Aj CA and study their first order consequences. Z.

Ratajczyk has recently done this for GB + the 2), class formation scheme (for each

n) and thus also for Morse-Kelley. The author of this paper has also (indepen-

dently) found a recursive axiomatization of the first order consequences of Morse-

Kelley. We study here one additional axiom and both its finitary and infinitary

consequences.

Definition. The axiom scheme of 2j choice (2j AC) is the scheme

Vx3X<p(X, x, Z, z) => 3XVx<p(Xx, x, Z, z)

for arbitrary parameters Z and z, and Xx the section of X determined by x-thus

{ v: <jc,.v> EX), and for <p first order.

It is well known that GB + 2j AC 1= Aj CA.

Theorem 9 [Well known]. If <3ft, %> f GB + 2} AC, then 3ft f AC.

Theorem 10. If 3ft f ZF + (V = OD) and 9ft can be expanded to a model of

GB + Aj CA, then <3ft, %&my h GB + 2j AC.

Proof. An obvious 2j collection axiom clearly holds in %?FW:

Vx3 Y<p(x, Y, Z, z) => 3 Y\/x3q<p(x, Yq, Z, z); this is easily provable from 2 col-

lection in the next admissible set above 3ft plus some coding. Now we can use the

canonical well-ordering given by ( V = OD) to pick the least such q.   □

Between Theorems 9 and 10 there is a large gap-the gap between the first order

AC and ( V = OD). In general, this gap seems very difficult to fill. However, in the

case of countable non-well-founded models we can settle the question. The result

follows from the following generalization of a theorem of Cohen, Feigner, Jensen,

Kripke, and Solovay (all independently).
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Theorem 11. Let A be a countable admissible set; let 9ft be a countable model of

ZFA ; and suppose that for each ß less than the ordinal of A, ß is in the well-founded

part o/9ft (or rather, in the transitive collapse of the well-founded part o/9ft). Suppose

9ftf=/lC. Then there is a binary relation < on 9ft such that <9ft, < > N "< is a

well-ordering of 9ft" + ZFA with replacement and separation for formulas involving

< .

Proof. The proof is a relatively easy modification of the standard case, that of

A = the set of hereditarily finite sets. See, e.g., Gaifman [1975] for a proof of the

standard case.

We use model-theoretic forcing for the admissible language £.A. (See, e.g., Keisler

[1973].) We let £'=£(< ), and we add a name m for each element m of 9ft-these

are the only names. We define our notion of forcing <3>by:p£'3,ifpE9ft and

9ft N (p is a well-ordering of some R(k)). Setp < q if p is an initial subsequence of

q. (Thus *& is closed under unions of chains.) Say p lh (x G y) iff x G y; p lh (x = y)

iff x = y; andplh (x < y) iff <x, y> G p.

We may assume the well-founded part of 9ft is a transitive set with the real E

relation. We show A c 9ft by induction on the rank of elements of A and then

show that 9ft satisfies reflection with respect to A -finite sets of tA formulas (much

as for finitary logic). Since 9ft and 9ft[C7] will have the same elements, we just need

to prove replacement and separation in 9ft[G].

For replacement we show that if p lh Vx E a3y<p(x, y), then p \\-w3b

Vx E a3y G btp(x,y), i.e., that Vp' > p3r' > p' (r'IhBèVx E a3y G b<p(x,y)).

(Parameters in tp are carried along easily.) Fixp' > p.p' N Vx E a3y<p(x, y), so

Vx E aVq > p'3r > q3y(rt <p(x,y)). (*)

By reflection in 9ft, choose a cardinal k (in the sense of 9ft) so that: (l)p', a, <p, and

all parameters of tp are in R(k); (2) the definitions of 9 and of q\V <p (the fixed <p

above) reflect to R(k); (3) R(k) satisfies (*); and (4) (coí(k) > card(a))m. 9ft 1= AC,

so pick an S in 9ft so that 9ft N "S well-orders R(k)." By recursion inside 9ft we

define an increasing sequence of conditions ra + x in R(k) forcing that for some

y G R(k), <p(xa,y), where xa is the ath element of a under the ordering S\a.

r0 = p'. ra+x is the 5-least condition in R(k) forcing <p(xa, y) and extending ra.

(Such a condition exists by (3).) At limit ordinals take unions. Finally, let r' =

U {ra+x: xa G a}. (We are assuming a ¥= 0.) Clearly r'll- VxEa3^E7\(»c)<p(x, y).

Since /•' > p', we are done with replacement.

Separation is similar,   fj

Theorem 12. Let 9ft N ZFC be countable, non-well-founded, and expandable to a

model of GB + Aj CA. Then 9ft is expandable to a model of GB + 2¡ AC.

Proof. We work in the countable, admissible set Xty^^ (See Barwise [1975]

for basic materials on % % ̂ .) Let a ( = k3") be the ordinal of %% 9W. Let T be

the theory ZFL(a) with replacement and separation axioms for formulas involving
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the extra symbol < , plus an axiom asserting that < is a well-ordering of the

model, plus an axiom asserting that the universe of the model is 3ft and that the £

of the new model is the e of the original 3ft. By Theorem 11, T is consistent.

Clearly it is 2 on %SH<$W. Hence, by another theorem of Ressayre (or just the

Gödel compactness theorem for a = w), we can find such an <3ft, < > so that

rc<2K,<> = a. (The theorem of Ressayre is Proposition II. 1 of Ressayre [1977]. It was

rediscovered in Schlipf [1978, Theorem 3.3]. Similar results have also been proved

by Friedman and Nadel.) But then let % = %&<m<<y Then clearly <9ft, 9C> N GB

+ 2j AC.   □

Corollary 13. GB + 2j ^4C is a conservative extension of ZFC for sentences

about sets.

A series of related conservative extension type results is poved in §2 of Barwise

and Schlipf [1976] for the theory Peano arithmetic. Analogous results hold here, for

ZF, ZFC, or ZF + (V = OD), depending upon how much choice is used in the

proof. Similar results for the definable subsets of a model are proved in Kreisel

[1965]. These also can be generalized with our techniques to results about GB + Aj

CA. In §3 of the Barwise-Schlipf paper certain theorems about the hard core of a

theory over a model are proved. Analogous results hold here. Finally, it is worth

noting that the non-well-founded models of ZF actually expandable to models of

GB + Aj CA are rather badly non-well-founded. For the non-w-standard expand-

able models, i.e., for the recursively saturated models, this is studied in §3 of

Schlipf [1978]. Many analogous results hold for a-standard but non-well-founded

models. It is fairly easy to prove, for example, that a model 3ft of ZF is recursively

saturated iff it is non-to-standard and there are arbitrarily large ordinals (in the

sense of 3ft) a such that 7î(a) (in the sense of 3ft) is an elementary submodel of 3ft.

(One direction of this is proved in that article; the other is easy.)
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