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HOW MANY KNOTS HAVE THE SAME GROUP?

JONATHAN SIMON1

Abstract. Let A" be a knot in S3, G = nx(S3 — K), n = number of prime factors

of K, v(G) = number of topologically different knot-complements with group G

and k(G) = number of distinct knot types with group G.

Theorem. If K is prime, then v(G) < 2. If n > 2, then v(G) = k(G) < 2"-1. For

each n > 2, the bound 2"~' is the best possible. For K prime, we still have the

conjecture v(G) = k(G) = \. If K is a cable-knot, then k(G) < 2.

Let K be a tame knot in the 3-sphere S3 and let G denote nx(S3 — K). If L is a

knot whose group is isomorphic to G, must K and L be equivalent? Must the

complements of K and L be homeomorphic? How many mutually inequivalent

knots, or mutually nonhomeomorphic knot-complements, can have the same

group? These problems are discussed in [8], [5, Problems 1.13 and 1.15] and, most

recently, [3], which is the basis for this paper.

W. Thurston has announced a proof [10], using hyperbolic structures, that for

knots whose exteriors have no essential annuli or tori, there are at most finitely

many knots (the number possibly varying with K) having a given group. For such

knots (in fact, for all knots whose exteriors have no essential annuli) the groups

determine the complements [2], so Thurston really is dealing with the question of

how well the complements determine the knots.

In [8], we gave an elementary proof that if certain prime knots that are not

hyperbolic, namely cable knots, also have the property that groups determine

complements, then at most three mutually inequivalent knots in S3 can have the

same complement. In this paper, we show (Corollary 2) that if K is any prime knot,

then there are at most two (S3 — K and perhaps one other) knot-complements with

group G. The case where A' is a cable knot is the only one (see any of the following:

[3]; [5, Problem 1.13] or [8, Paragraph 4]) for which we cannot (yet?) prove that the

complement of a prime knot is determined by its group. But we can prove

(Theorem 1) that there are at most two cable knots (hence, at most two cable

knot-complements) having a given group.

Certain composite knots are the only known examples of inequivalent knots with

isomorphic groups, the archetypes being the square knot and the granny knot [4],

[7]. It is shown in [3] that composite knots with isomorphic groups actually are

composites of equivalent knots and, consequently, at most finitely many composite

Received by the editors May 22, 1978 and, in revised form, April 9, 1979.

AMS (MOS) subject classifications (1970). Primary 55A25, 57A10.
'Research supported by University of Iowa Developmental Assignment, National Research Council

of Canada Grants A-5614, A-5602, and A-8207, NSF Grant MCS76-06992 and the hospitality of York

University.

© 1980 American Mathematical Society

0002-9939/80 /0000-0429/$02.25

162



HOW MANY KNOTS HAVE THE SAME GROUP? 163

knots can have a given group. By slightly sharpening the observations made in [3],

we can show (Theorem 3) that if A' is a composite with n prime factors (n > 2)

then G is the group of at most 2"~x knots. By composing invertible, non-

amphicheiral knots (e.g. torus knots), it may be seen that the bound 2"_1 actually is

attained for each n.

Definitions and notation. Knots K, L in S3 are equivalent if there exists a

homeomorphism h: S3^>S3 such that h(K) = L. The closed complement of a

regular neighborhood of K, sometimes called the exterior of K, is denoted C3(K).

There are, up to isotopy, unique simple closed curves p and X on 3C3(Ä^) such that

p A. X, p bounds a disk pierced once by K and X is null-homologous in C3(K).

When we need to be precise about orientations, we adopt the conventions that K is

an oriented curve in a right-hand oriented S3, the longitude À is oriented parallel to

K and the meridian ft is oriented so that its linking number with K is +1. The

equation J = (p, q; K) means that / is a simple closed curve on dC3(K) and J is

oriented so that, as 1-cycles on dC3(K), J is homologous topju + qX. The statement

y is a (p, ^)-cable about K means that for some orientations of p and X,

J — (p, q; K). When \q\ > 2, we call J a cable-knot with core K. If K is an oriented

knot then the inverse of K, denoted K~ , is the same knot with its orientation

reversed. The mirror-image of K, denoted AT*, is the image of K under a reflection

of S3.

1. Prime knots.

Theorem I. At most two inequivalent cable knots have the same group, that is, if

K0, Kx, K2 are cable knots with isomorphic groups, then two (or all) of the knots are

equivalent.

Proof. Suppose K0 = (p, q; 770). If 770 is unknotted, then À^ is a torus knot ([1]

or [9]) and Ä',, K2 are equivalent to K0 [6]. Assume from now on that 770 is knotted.

§3 of [3] provides us with the following information. For i = 1,2, K¡ =

(p¡, q¡; 77,) where \p¡\ = \p\, \q¡\ = \q\ and the exteriors of 77, and 770 are homeo-

morphic. For i = 0, 1,2, the manifold C3(A^) is cut by an essential annulus A¡ into

a knot-manifold C3(77,) and a solid torus, and K¡ is parallel in S3 to a component

of 3/1,. Finally, there are homotopy equivalences Fy'. C3(K¡)^> C3(Kj) (i = 0, 1, /

= 1, 2) such that Fv maps (C3(H¡), A,) homeomorphically onto (C3(Hf), Af). Let Fv

denote the restriction of F¡j to C3(H¡). To show that some of K0, Kx, K2 are

equivalent, it suffices to show that one of the homeomorphisms Fox, Fx2, or

F02 = Fx2 ° F01 extends to an autohomeomorphism of S3.

Let p¡, \ be a meridian and longitude for 77, (i = 0, 1, 2). Orient /íq, a0

standardly, and orient ¡u,, X¡ (i = 1, 2) so that the components of 3/4, are homolo-

gous topjUt + qX¡ on 3C3(77,). There exist numbers a, ß, y, 8, e, tj, each of absolute

value 1, and integers x,y such that the actions of 7? are as follows (the third line

comes from the fact that F0 maps A¡ homeomorphically onto Af).
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^01 ^12 Pq2

Po -* pfAf p, -* ¡qx^

Ao~*Af À,-»A2

tâxz -* ( pf xf )e       pf x," -> ( pf Ajy

We shall show now that at least one of the exponents x, y, ay + 8x must equal 0,

so the appropriate Fy extends to 53. Assume x ¥^0 and y ¥= 0. If we recompute

^oivMoV) m terms °f ^oiÍMo) and ^oi(Ao)> we see mat a = e (since p ¥= 0) and

px = ^(a - ß). Since p =£ 0, x ¥= 0, and |«| = | yS | = 1, we conclude ß = -a

and x = 2aq/p. Similarly, we have o = -y and v = 2yq/p. Thus ay + ox =

(2q/p)(ay + 8a) = 0.

Corollary 2. /!/ most two prime knot-complements can have the same group.

Proof. Suppose K0 is a prime knot and Kx, K2 are knots whose groups are

isomorphic to ttx(C3(K0)). As discussed in [3], [5, Problem 1.13] or [8, Paragraph 4],

we can conclude that all the C3(7C,) are homeomorphic except perhaps in the case

where K0 is a cable knot. In this case, Theorem 1 applies.

Remark. One might ask whether it is possible to construct the unique (by

Corollary 2) candidate for another prime knot-complement having the same group

as a given one. What we can construct is a knot in a homology 3-sphere with knot

group isomorphic to the given one and knot-complement, in general, not homeo-

morphic to the given one. The conjecture that prime knot-complements are

determined by their groups translates into the conjecture that the homology spheres

obtained are never homeomorphic to S3. Corollary 2 translates into the fact that

for each knot K there is at most one homology sphere we need to test. The

algorithm for testing a particular knot K0 is as follows. If K0 is not a cable knot,

then C3(7C0) is determined, among knot manifolds in S3, by its group. If K0 =

(p, q; 770) (here we are being careful about orientations) and \p\ > 3 then, again,

C3(7C0) is characterized by its group [3]. If \p\ < 2 then replace 770 by whichever of

the four knots 770, 770_1, H*, or 770*_1 that enables us to write (using standard

orientations) K0 = (\p\, \q\; 770). If K0 = (1, \q\; 770), (try to) show that the surgery

manifold M3 (770; 1, 2q) is not S3; if KQ = (2, \q\; 770), show M3(H0; 1, q) is not

S3.

2. Composite knots. The square and granny knots are the best known examples

of inequivalent composite knots with the same group. The granny is the sum,

K # K, of two identical trefoil knots. The square knot is the sum, K # K*, of a

trefoil and its mirror image. The reason the knots are different is intuitively clear

because K and K* are somehow different. The reason the groups are isomorphic is

that K is invertible! To establish Theorem 3 below, we combine the latter insight,

for which some thanks are due to D. R. McMillan, with results of [3].

The operation of composition of knots is well defined on oriented isotopy types

but not well defined on knot types. We can ease this confusion by defining knots as

Ao-^Xf
^^(pfA'y
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purely algebraic objects. Because of [11], we can define an oriented knot A' to be a

triple (G, p, X), where G is isomorphic to ttx(S3 — K) and p and X are elements of

G corresponding to standardly oriented meridian and longitude of K. Knots Kx and

K2 are of the same oriented isotopy type if and only if there exists an isomorphism

of triples (Gx, px, Xx) as (G2, p2, A2). The composition Kx # K2 is defined to be

(Gx * G2, px, XXX2). We can define an automorphism 9 of Gx * G2 by

0(g) = A2gA2_1. Since P2 commutes with A2 and px = p^,9 defines an isomorphism

between the triples representing A', # K2 and K2 # Kx. This is an alternate proof

that composition of knots is commutative. If K = (G, ¡i,X) then K~x =

(G, p~x,X~x) and K* = (G, p~x, X). The knot K is invertible if and only if

(G, p, X) a¿ (G, p~x, X~x) and amphicheiral if and only if (G, p, X) a* (G, p", X~e)

for some e = ± 1. The composition Kx # K* = (Gx, px, A,) # (G2, p^x, X^ =

(Gx *_, G2, px, XXX2). Comparing this with A', # K2, we see that the nicest situa-

tion in which the composite knot groups will be isomorphic is when G2 admits an

automorphism § such that ^(/tj) = p2x. If <b comes from a symmetry of the knot

K2, then ¿>(À2) = X2X. If <t>(X2) = X2 (the case where Ä^2 is amphicheiral) then <b

defines an equivalence between Kx # K* and A', # A"2. If <t)(X2) = X2 ' (the case

where K is invertible) we have the square vs. granny situation of isomorphic groups

but apparently inequivalent knots.

Theorem 3. If G is the group of a knot with n prime factors (n > 2), then G is the

group of at most 2"~x mutually inequivalent knots.

Remark. If prime knots are indeed determined by their groups, then the

hypothesis n > 2 is unnecessary and Theorem 3 is the desired answer to the title of

this paper.

Proof of Theorem 3. Let

K = Kx #   ■ ■ ■   # Kn = (G„ px, Xx) #  ■ ■ ■   # (Gn, p„, Xn)

and suppose L is a knot whose group is isomorphic to the group of Ä\ The

statement of Theorem 1 of [3] implies that

L = (Gx,pex',Xf') #  • • •   # (Gn,p\Xs°)

where |e,| = |5,| = ±1, but in the proof of that theorem, it is shown that all the e,

are equal, since the fact that the preferred meridians of the K¿ are homologous in

C3(K) implies that their images are homologous in C3(L). Thus for some e = ± 1,

L = (Gx,plX?<)#  ■■■   #(G„,p;,Xns-)

= (g, *  •••   *   Gn,p¡,\M>-■-)£).

We now have 2"+1 choices for L, corresponding to choices of e, Sx, . . ., S„.

Therefore L represents one of 2"+x oriented isotopy types and ¿(2"+1) = 2n_l knot

types.
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