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CENTRALIZER NEAR-RINGS THAT ARE

ENDOMORPfflSM RINGS

CARLTON J. MAXSON AND KIRBY C. SMITH

Abstract. For a finite ring R with identity and a finite unital /{-module V the set

C(R; V) = {/: V-* V\f(av) = af(v) for all o e R, v e V) is the centralizer

near-ring determined by R and V. Those rings R such that C(R; V) is a ring for

every R-module V are characterized. Conditions are given under which C(R; V) is

a semisimple ring. It is shown that if C(R; V) is a semisimple ring then C(R; V) »

EndR(P").

1. Preliminaries. Let G be a group and T a semigroup of endomorphisms of G.

Then C(T; G) = {/: G -> G|/(0) = 0 and/(ya) = y/(a) for all y E T, a E G) is a

near-ring under the operations of function addition and function composition, and

is called the centralizer near-ring determined by T and G. Moreover, every

near-ring with identity arises in this manner [6, p. 50]. It has been shown by Betsch

[1] that N is a finite simple near-ring with identity if and only if there exists a finite

group G and a fixed point free group of automorphisms T of G such that

TV as C(T; G). The structure of C(T; G) for various G's and T's has been investi-

gated in [2], [3] and [4].

Throughout this paper R will denote a finite ring with 1 and V a finite unital

Ä-module. The corresponding centralizer near-ring is C(R; V) = {/: V-* V\f(rv)

= rfiv) for all r E R, v E V). In dealing with C(R; V) we may assume, without

loss of generality, that V is a faithful Ä-module, for we have C(R; V) = C(R; V)

where Fis a faithful Ä-module, R = /?/Ann(F).

In [5] we showed that if R is a finite simple ring then C(R; V) is a simple

near-ring. This result is used to obtain the following generalization.

Proposition. Let R be a finite semisimple ring and let V be a finite R-module.

Then C(R; V) is a semisimple near-ring.

Proof. We have R = Sx © • • • ©5, where each S¡ is a simple ring. Let e¡

denote the identity of S,. If V¡ = [v E V\e¡v = v) then V = Vx © • • • © V, and

f(V¡) Ç V¡ for each / G C(R; V). Further, if f denotes the restriction of / to V¡

then the map <b: C(R; V)^> C(SX; Vx) © • • • ®C(S,; V,) given by <b(f) =

(fv • ■ • >/<) is a near-ring homomorphism. The map is onto, for if </,, . . . ,/() is

in C(SX; Vx) © ■ • ■ ©C(S,; Vf) extend each/, to all of V by/(ü, + • • • +vt) =

fi(Vi). Then/= 2/ is an element of C(R; V) such that <f>(/) = </„ . . . ,/,>. To
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show that 4> is one-to-one we note that ej(vx + ■ ■ • + v,) = f(e¡v¡) = f(v¡), i =

1,. .., t, imphes f(vx + • • • +v,)= f(vx) + ■ ■ ■ +f(v,) = /,(«,) + • • • +f(v,).
Hence if <p(/) = 0 then / = 0. Therefore <f> is an isomorphism and from Theorem 1

of [5] each C(S¡; V¡) is a simple near-ring.

A type of converse to the proposition is also true. If C(R; V) is a semisimple

near-ring for every Ä-module V then in particular C(R; R) is semisimple. But

C(R; R)is anti-isomorphic to R so R is a semisimple ring.

Again using Theorem 1 of [5] if R = S, © • • • ®Sr S¡ simple and not a field, or

5, is a field and dim5(I^) = 1, we have C(R; V) is a semisimple ring. Moreover, in

this setting, C(R; V)'= EndÄ(F). (See proof of Theorem 1 of [5].)

It is the goal of this paper to consider the following questions which arise

naturally from the above remarks.

A. Which finite rings R have the property that C(R; V) is a ring for every

Ä-module VI

B. If C(R; V) is a semisimple ring when is C(R; V) = EndÄ(K)?

C. Which semisimple near-rings have the form C(R; V) for some pair (R, V)1

In the next section we answer question A. In §3 we show that if C(R; V) is a

semisimple ring then one always has C(R; V) = EndÄ(K). Moreover if C(R; V) is

semisimple then information about the structure of the simple components is

obtained, giving a partial answer to question C.

2. Strongly noncommutative rings. In this section we characterize those rings R

such that C(R; V) is a ring for every V. Recall that if R is a finite ring with identity

then R = T + M where T n M = (0), M is a subgroup of rad R and T = T,

© • • • © T,, 7j a complete n¡ X n¡ matrix ring over a local ring L, with T/rad T s

R/rad R [7, p. 162]. Moreover there exist mutually orthogonal idempotents

ex, . . . ,e, in R such that 1 = ex + • • • + e, and T¡ = e,Äe, for each /'. Also

R/rad R = 5, © • • • ©5, where each S¡ is an «, X n¡ simple matrix ring and T¡ is

mapped onto S¡ under the natural homomorphism R -» R/rad R (see [7, p.

162-163]). We say R is strongly noncommutative if n¡ > 1 for / = 1, 2, . . ., t.

Theorem 2.1. For a finite ring R with identity the following are equivalent:

(i) C(R; V) is a ring for every faithful R-module V;

(ii) C(R; V) = EndÄ(K)/o7- every faithful R-module V;

(iii) R is strongly noncommutative.

Proof. Since (ii) imphes (i) is clear it remains to show (iii) implies (ii) and (i)

implies (iii).

Suppose R is strongly noncommutative where, as above, R = T + M, T = T,

© • - - © T, with each T¡ an n, x w, matrix ring over a local ring L, and n¡ > 1 for

each /'. If V is a faithful Ä-module then F is a faithful, unital T-module and

C(R; V) G C(T; V). Thus it suffices to show that for each/ E C(T; V) and for

each v,w E V, f(v + w) = f(v) + f(w). To this end let e¡ be the identity for Tj;

then V = Vx © • • • © K, where V¡ = e,V. We have fivx + • • • +v,)=f(vx)

+ • • • +f(v,), v¡ E V¡, so it suffices to show f(vx + vf) = f(vx) + fivf) for every

»/, vf E V¡. Since f(Vj) G V¡,f\ V¡ belongs to C(T¡; V¡). Using an argument almost



CENTRALIZER NEAR-RINGS 191

identical to the proof of Theorem 1 of [5], it is seen that/| V¡ is linear since n, > 1.

Assume now that C(R ; V) is a ring for each Ä-module V but R is not strongly

noncommutative. Then in the decomposition R = Tx © • • • © T, + M at least

one T¡ is a local ring, say 7*,. We know R/iad R as Kx © 52 © • • • ©5, where Kx

is a field and each 5, is a simple ring. Also under the homomorphism R ->

R/rad R, Tx -» Kx, T2 -» S2, . . ., T, -»■ Sr Thus there exists a maximal ideal /

containing T2, T3, . . ., Tt and rad R such that R/I » Kx. Under the action

rk =7k, R/I is an irreducible Ä-module. Also V = R © R/I © R/I is a faithful

Ä-module under componentwise action. If we let W = R/I © Ä/7 then C(R; W)

can be embedded in C(R; V) as follows. For g E C(R; IV), define g: V-* V by

g(r + kx + k2) = g(kx + kf). We note further that since R/I is a field, AnnÄ(ffO

= / and so C(Ä; ff) as C(R/I; W) as C(AT,; W). Since dim^ ff = 2, it follows

from Theorem 1 of [5] that C(KX; W) and hence C(R; W) are not rings. Conse-

quently C(R; V) is not a ring, a contradiction. Thus it must be the case that R is

strongly noncommutative.

For any finite ring R there exists an Ä-module V such that C(R; V) is a ring;

e.g., let V = RR. Moreover it is always the case that EndÄ(K) Ç C(R; V). We now

give an example to show that it is possible for C(R; V) to be a ring and yet

C(R; V)*EndR(V).

Example 2.1. Let R be the ring consisting of the 3x3 matrices of the form

abc
0 a 0
0    0a

a, b, c E GF(2).

Let

= (ííWv,zeGF(2)|.

A calculation shows that EndÄ(F) = R. Another calculation gives f(Rv) G Rv for

each/ E C(R; V) and for each v E V. From this it follows that C(R; V) is a ring

since if o G F then

f(g + h)v =f(gv + hv) = f(rxv + r2v) = (r, + r2)f(v) = (fg + fh)v.

Let [ex, e2, e3) be the standard basis for the vector space V over GF(2). Then

V = R(ex + e2 + e3) u Re2 U Re3 and the relation f(ex + e2 + e3) = fief) = f(e3)

= ex determines a function in C(R; V). But fis not in EndÄ(F) since f(e2 + e3) =?=

fief) + f(e3). Hence EndÄ(K) =£ C(R; V).

In the next section we show that if C(R; V) is a semisimple ring then C(R; V) =

EndÄ(F).

3. Semisimple centralizer near-rings. Let C(R; V) be semisimple. Then the center

of C(R; V) cannot contain nonzero nilpotent elements. Hence the center of R

cannot contain nilpotent elements so the center of R is a direct sum of fields. Thus

if n is the characteristic of R, we have n = pxp2 ■ • • ps where the />/s are distinct

primes. But this implies that R = Rx® ■ • • (BRS where R¡ has characteristic/>,.

Because it has characteristic p¡, R¡ is an algebra over the field GF(p¡) and so the
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Wedderburn principal theorem [7, p. 164] holds for R¡. Consequently R = 2V © S0

+ N where each S0 is a simple ring and TV is a nilpotent ideal of R.

The following example shows that there exist semisimple centralizer near-rings

that are not rings.

Example 3.1. Let R = R © F where F = GFÇL) and R is the simple ring of

2x2 matrices over GF(2). Let V¡ = {(*)\x,y E F), i= 1, 2, and let R act on

V = Vx © V2 componentwise. Then C(R; V) s C(R; Vj) © C(F; Vj) where

C(R; Vj) is a simple ring while C(F; Vj) is a simple near-ring which is not a ring.

Hence C(R; V) is semisimple and not a ring.

For the remainder of this section we assume C(R; V) is semisimple and investi-

gate when C(R; V) equals EndÄ(K). As we have seen R = Sx © • • • ©S, + N

where each S¡ is simple and N is a nilpotent ideal of R. We may assume N =£ (0);

otherwise R is semisimple and the results of § 1 apply.

Assume / = 1, i.e. R = Sx + N. From the proof of Lemma 1 of [5] it follows that

C(R; V) contains a function / such that gxfg2f= 0 for all gx,g2 E C(R; V).

Hence C(R; V) contains a nilpotent C(R; F)-subgroup and is not semisimple. So

we may assume t > 1.

Let e, denote the identity for S¡. Then V = Vx © • • • ©F( where V¡ = [v E

V\e¡v = v). Also for i,j = 1, 2, . . . , t let Ntj = e¡Nej. Then N = 2 7v"r For / =

1,..., t let B, -» {Wf G I^w,. = nyVj for some y =*= i, ntJ E Ny, Vj e^.), and let W

denote the subgroup of V generated by Bx u B2 u • • • U Bt. Finally let WL =

[w E V\f(w + v)= fiw) + f(v) for all v E V,f E C(R; V)}.

Lemma 3.1. W is an R-submodule of V, WL is a subgroup of V and W G WL.

Proof. An element of W has the form w = 2 n¡,v¡ with i =£j. For nk, E Nu and

nvVj E Bj we have -„ftytj, E Bk if k ¥=j and nk/n0Vj = n^n^vj) E Bk if k = j. In

this manner it is seen that NW G W. Also if s E Sx © • • • ®S, then srtyV, =

(sn¡j)Vj E B¡ since sn¡j G N„. Hence SW G IT^and If is an Ä-submodule of V.

The second part of the lemma is straightforward and is omitted. To prove the

last part if suffices to show that B¡ G WL for each /'. To this end let v¡ = nyVj E B¡,

f E C(R; V). For k * i we have/fo + vk) = fivf) + f(vk). For v¡ E V„

f(V¡ + v¡) = f(n¡jvj + vj) = f((ny + ej)(vj + vj))

= (ny + ej)f(vj + vj) = («, + ej)[f(vj) + fa)] = fa) + f(v¡).

With this it is easy to see that/(t), + v) = f(v¡) + f(v) for all v E V, as desired.

From the lemma, every / G C(R ; V) is linear on W and moreover /( W) G W.

Suppose now that C(R; V) is simple. Then the map f -* f\W is an imbedding of

C(R; V) into EndR(W). Also W ¥* (0), for otherwise NtjV} = (0) for each i ¥=j and

so each V¡ is an Ä-module and C(R; K)-invariant. Hence C(R; V) would not be

simple. Thus W ¥= 0 and C(R; V) is a ring. This provides an alternate proof to

Theorem 2 of [5].

Lemma 3.2. If the simple ring S¡ is not a field then every f E C(R; V) is linear on

V,
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Proof. Again the restriction map/-»/| V¡ is a homomorphism of C(R; V) into

C(S¡; Vf). Since C(S¡; V¡) = Ends(F,), every/ e C(R; V) is linear on V¡.

Let v¡ be a nonzero element in Vt. Then from the chain of S,-submodules of V¡,

(0) Qlaer N c\ V¡ Cker N2 n V¡ Q • ■ ■ ç ker Nk~x n V¡-Q V„

we see that there exists a unique integer p(v¡) such that v¡ E ker A/^ n Vt but

v¡ £ ker /y*«*)-! n K,. We call p(u,) the rank of v¡. For completeness let 0 have

rank 0. We note that for v¡, v¡ in V¡ we have p(t>, + v¡) < max{p(u,), p(v¡)}.

Lemma 3.3. // ker N C\ V¡ = {0} then every f E C(R; V) is linear on V¡.

Proof. Assume/ E C(R; V) such that/is not linear on V¡. Then there exist v¡,

vi in V¡ such that/(t>, + v'¡) - f(v¡) - f(v¡) ¥= 0. Among all such pairs {v¡, v¡) select

one pair having an element of minimal rank, say {x¡, x[), where x¡ has minimal

rank. For each nJt E Nß where j ¥= i we have nji(f(xi + x'f) — fix¡) - f(x¡)) = 0,

since njixi E W. Due to the minimality of x¡ we also have

»,X/(*,+ *,')-/(*,)-/(*,')) = o

for each n¡¡ E Nu. Hence/(x, + x¡) — f(x¡) — fix'f) E ker N n V¡, a contradiction.

Theorem 3.1. Let C(R; V) be a semisimple near-ring where R is not semisimple.

Then R = Sx © • ■ ■ ®St + N where t > 1, each S¡ is a simple ring and N is a

nonzero nilpotent ideal of R. Moreover the following are equivalent.

(i) C(R; V) is a ring.

(ii) C(R; K) = End/?(K).
(iii) For each i at least one of the following is true:

(a) S¡ is not a field;

(b) S, is afield and dims[ker J» n KJ < 1;

(c) Vf C W.

Proof. The first part of the theorem has already been established. For the

equivalences we start with (iii) -» (ii). From Lemma 3.2 if S¡ is not a field then

every / E C(R; V) is linear on V¡. The same conclusion is true if V¡ <Z W. So we

may assume that at least one S¡ is a field, say Sx, with dimsJker N n Vx] < 1 and

Vx ¡Z W. If ker N r\ Vx = (0) then Lemma 3.3 applies. Therefore, we may also

assume ker A'' n Vx is a 1-dimensional vector space over 5,.

Let Wx = W n Vx and S = Sx © • • •_ ®S,. V is a completely reducible 5-mod-

ule and we have, as S-modules, V = Vx © W, © X where X = V2 © • • • © V„

and Vx = Vx © Wx. Note that W, © X is an Ä-module and is C(R; K)-invariant.

We select an 5,-basis {«,, v2,. .., vt, wx,. .., wm) for Vx © Wx as follows. Let

[wx, . . ., wm) be a basis for Wx. Let [v,, . . ., v¡} be a basis for V\ = {v E

Vx\Nxxv E Wx). Let [vh, . . . , vt¡, . . . ,v,} be a basis for V\ = [v E Vx\Nxxv E

V¡), etc. Using the fact that A^, is nilpotent, this process tenriinates to give the

desired basis [vx, . . . ,v¡, wx, . . . , wm) for Vx © Wx. Thus every v E V can be

uniquely represented in the form v = sxxvx + • • • +sxlv, + w + x where sXi E Sx,

wE Wx,x EX.

Let k be a nonzero element in ker N n Vx. The function/: V —* V defined by
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f(sxxvx + ■ ■ ■ +sxlv, + w + x) = sxxk belongs to C(R; V). Let L = C(R; V)f

the C(R; F)-subgroup generated by /. If k G Wx then g(fc) G ker N n IT, for

each g G C(R; V), and thus gxfg2f= 0. Thus L2 = (0), a contradiction to

C(i?; F) being semisimple. Hence ker tV n Wx = (0) and, since Vx was an arbi-

trary complement of Wx in Vx, we may reselect F, if necessary such that

ker N n VXGVX; i.e. Vx = K, © (ker iV n F,) © MK, where f, - K, © (ker TV

n F,). If f, t^ (0) then we may assume our first basis element vx belongs to Vx.

But once again, if / is defined as above, we get L2 = (0). Hence Vx = (0) and

Vx = ker JV n Vx. We now have V = (ker N n f,) © W, © A-. Since

dim (ker TV n Vj) = 1,

each / G C(R; V) is trivially linear on ker N n Vx and hence on all of Vx. This

shows that (iii) -» (ii).

Suppose (i) is true. Then we may assume by way of contradiction that some S¡ is

a field, say Sx, that dim5i[ker N n Vx] > 1 and that F, 2 IF Because C(7?; V) is

semisimple the arguments above imply V = (ker N n F,) ffi IF, © A where If,

and A are defined as before. But ker N n Vx and If, © A are both Ä-modules

and both C(R; V)-invariant. Hence

C(R; V) « C(SX; ker W n F,) © C(/c, If, © X).

Since dims (ker N n Vj) > 1, the first summand is not a ring. Hence (i) -»(iii).

Since (ii) -» (i) is obvious the proof is complete.

As a consequence of this theorem we note that if C(R; V) is a simple ring where

R is not a field then C(R; V) = EndÄ(F). This was stated as Theorem 3 in [5] but

the proof given there is incorrect.

We also note that as a consequence of the proof of Theorem 3.1 and the

preliminaries to it we have the following structural result for semisimple near-rings

of the form C(R; V).

Corollary. If C(R; V) is semisimple then C(R; V) = Ax © • • • (BA, where

each A¡ is either a simple ring or a simple near-ring of the form C(F¡; V¡) where V¡ is

a vector space over a field F¡. Moreover if R is not semisimple then at least one A¡

must be a ring.

Proof. It remains to prove the last part of the corollary. Since C(R; V) is

semisimple then R = Sx © ■ • • © Sk + N where N = rad R and each S¡ is simple

with identity e¡. As before let NtJ = ejNej and let If be the Ä-submodule of V as in

Lemma 3.1. If If = (0) then NyVj = (0) for each / ■►*/ where Vj is the 1-space for

a. This means each V¡ is an Ä-module as well as C(R; V)-invariant. Hence

C(R; V) - C(RX; Vx) © • • • ®C(Rk; Vk)

where R¡ = S¡ + Nu. Since C(R; V) is semisimple each C(R¡; V¡) is semisimple [8,

p. 146]. We show now that if Nu =£ (0) then C(R¡; V¡) cannot be semisimple.

Suppose Nlt = (0) but JV^-1 =- (0). Let If, = ker N¡rx = [v E V¡\nv = 0 for all

n E N/~1}, a proper subgroup of V¡, an Sj-submodule, and C(R¡; I^.)-invariant. As

an 5,-module V¡ is completely reducible so V¡ = W, © W2, an 5,-module direct
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sum. As constructed in the proof of Lemma 1 of [5] there exists a nonzero

/ G C(R¡; V¡) such that f(V¡) Q Wx and f(Wx) = {0}. Let / = {/ G
C(R¡; VAlfiV,) C Wx and f(Wx) = {0}}. Then / is a nilpotent C(R¡; k>subgroup

(I2 = (0)) and hence C(Ä,; V¡) is not semisimple. So each Nu = (0) and since

Ny V = (0), N0 = (0) if i =£j. Thus R is semisimple.

So we may assume W # (0). Since W is C(R; F)-invariant the map/-»/| W is a

homomorphism of C(R; V) into the ring EndR(W). Hence a non trivial homomor-

phic image of C(R; V) is a ring and this implies at least one simple component of

C(R; V) is a ring [8, p. 55].
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