CENTRALIZER NEAR-RINGS THAT ARE ENDOMORPHISM RINGS

CARLTON J. MAXSON AND KIRBY C. SMITH

ABSTRACT. For a finite ring R with identity and a finite unital R-module V the set $C(R; V) = \{f: V \to V | f(\alpha v) = \alpha f(v) \text{ for all } \alpha \in R, v \in V\}$ is the centralizer near-ring determined by R and V. Those rings R such that C(R; V) is a ring for every R-module V are characterized. Conditions are given under which C(R; V) is a semisimple ring. It is shown that if C(R; V) is a semisimple ring then $C(R; V) = \text{End}_R(V)$.

1. Preliminaries. Let G be a group and Γ a semigroup of endomorphisms of G. Then $C(\Gamma; G) = \{f: G \to G | f(0) = 0 \text{ and } f(\gamma a) = \gamma f(a) \text{ for all } \gamma \in \Gamma, a \in G\}$ is a near-ring under the operations of function addition and function composition, and is called the centralizer near-ring determined by Γ and G. Moreover, every near-ring with identity arises in this manner [6, p. 50]. It has been shown by Betsch [1] that N is a finite simple near-ring with identity if and only if there exists a finite group G and a fixed point free group of automorphisms Γ of G such that $N \cong C(\Gamma; G)$. The structure of $C(\Gamma; G)$ for various G's and Γ 's has been investigated in [2], [3] and [4].

Throughout this paper R will denote a finite ring with 1 and V a finite unital R-module. The corresponding centralizer near-ring is $C(R; V) = \{f: V \to V | f(rv) = rf(v) \text{ for all } r \in R, v \in V\}$. In dealing with C(R; V) we may assume, without loss of generality, that V is a faithful R-module, for we have $C(R; V) = C(\overline{R}; V)$ where V is a faithful \overline{R} -module, $\overline{R} = R/\text{Ann}(V)$.

In [5] we showed that if R is a finite simple ring then C(R; V) is a simple near-ring. This result is used to obtain the following generalization.

PROPOSITION. Let R be a finite semisimple ring and let V be a finite R-module. Then C(R; V) is a semisimple near-ring.

PROOF. We have $R = S_1 \oplus \cdots \oplus S_t$ where each S_i is a simple ring. Let e_i denote the identity of S_i . If $V_i = \{v \in V | e_i v = v\}$ then $V = V_1 \oplus \cdots \oplus V_t$ and $f(V_i) \subseteq V_i$ for each $f \in C(R; V)$. Further, if f_i denotes the restriction of f to V_i then the map $\phi: C(R; V) \to C(S_1; V_1) \oplus \cdots \oplus C(S_t; V_t)$ given by $\phi(f) = \langle f_1, \ldots, f_t \rangle$ is a near-ring homomorphism. The map is onto, for if $\langle f_1, \ldots, f_t \rangle$ is in $C(S_1; V_1) \oplus \cdots \oplus C(S_t; V_t)$ extend each f_i to all of V by $\bar{f}_i(v_1 + \cdots + v_t) = f_i(v_i)$. Then $f = \sum \bar{f}_i$ is an element of C(R; V) such that $\phi(f) = \langle f_1, \ldots, f_t \rangle$. To

AMS (MOS) subject classifications (1970). Primary 16A76, 16A44; Secondary 16A42, 16A48. Key words and phrases. Centralizers, near-rings, semisimple rings.

Received by the editors July 26, 1979 and, in revised form, October 30, 1979.

show that Φ is one-to-one we note that $e_i f(v_1 + \cdots + v_t) = f(e_i v_i) = f(v_i)$, $i = 1, \ldots, t$, implies $f(v_1 + \cdots + v_t) = f(v_1) + \cdots + f(v_t) = f_1(v_1) + \cdots + f_t(v_t)$. Hence if $\phi(f) = 0$ then f = 0. Therefore ϕ is an isomorphism and from Theorem 1 of [5] each $C(S_i; V_i)$ is a simple near-ring.

A type of converse to the proposition is also true. If C(R; V) is a semisimple near-ring for every *R*-module *V* then in particular C(R; R) is semisimple. But C(R; R) is anti-isomorphic to *R* so *R* is a semisimple ring.

Again using Theorem 1 of [5] if $R = S_1 \oplus \cdots \oplus S_i$, S_i simple and not a field, or S_i is a field and $\dim_{S_i}(V_i) = 1$, we have C(R; V) is a semisimple *ring*. Moreover, in this setting, $C(R; V) = \operatorname{End}_R(V)$. (See proof of Theorem 1 of [5].)

It is the goal of this paper to consider the following questions which arise naturally from the above remarks.

A. Which finite rings R have the property that C(R; V) is a ring for every R-module V?

B. If C(R; V) is a semisimple ring when is $C(R; V) = \text{End}_{R}(V)$?

C. Which semisimple near-rings have the form C(R; V) for some pair (R, V)?

In the next section we answer question A. In §3 we show that if C(R; V) is a semisimple ring then one always has $C(R; V) = \operatorname{End}_{R}(V)$. Moreover if C(R; V) is semisimple then information about the structure of the simple components is obtained, giving a partial answer to question C.

2. Strongly noncommutative rings. In this section we characterize those rings R such that C(R; V) is a ring for every V. Recall that if R is a finite ring with identity then R = T + M where $T \cap M = (0)$, M is a subgroup of rad R and $T = T_1 \oplus \cdots \oplus T_i$, T_i a complete $n_i \times n_i$ matrix ring over a local ring L_i with $T/\text{rad } T \cong R/\text{rad } R$ [7, p. 162]. Moreover there exist mutually orthogonal idempotents e_1, \ldots, e_i in R such that $1 = e_1 + \cdots + e_i$ and $T_i = e_i Re_i$ for each i. Also $R/\text{rad } R = S_1 \oplus \cdots \oplus S_i$ where each S_i is an $n_i \times n_i$ simple matrix ring and T_i is mapped onto S_i under the natural homomorphism $R \to R/\text{rad } R$ (see [7, p. 162–163]). We say R is strongly noncommutative if $n_i > 1$ for $i = 1, 2, \ldots, t$.

THEOREM 2.1. For a finite ring R with identity the following are equivalent: (i) C(R; V) is a ring for every faithful R-module V;

(ii) $C(R; V) = \operatorname{End}_{R}(V)$ for every faithful R-module V;

(iii) R is strongly noncommutative.

PROOF. Since (ii) implies (i) is clear it remains to show (iii) implies (ii) and (i) implies (iii).

Suppose R is strongly noncommutative where, as above, R = T + M, $T = T_1 \oplus \cdots \oplus T_i$ with each T_i an $n_i \times n_i$ matrix ring over a local ring L_i and $n_i > 1$ for each *i*. If V is a faithful R-module then V is a faithful, unital T-module and $C(R; V) \subseteq C(T; V)$. Thus it suffices to show that for each $f \in C(T; V)$ and for each $v, w \in V$, f(v + w) = f(v) + f(w). To this end let e_i be the identity for T_i ; then $V = V_1 \oplus \cdots \oplus V_i$ where $V_i = e_i V$. We have $f(v_1 + \cdots + v_i) = f(v_1) + \cdots + f(v_i)$, $v_i \in V_i$, so it suffices to show $f(v_i^1 + v_i^2) = f(v_i^1) + f(v_i^2)$ for every $v_i^1, v_i^2 \in V_i$. Since $f(V_i) \subseteq V_i, f|V_i$ belongs to $C(T_i; V_i)$. Using an argument almost

identical to the proof of Theorem 1 of [5], it is seen that $f|V_i$ is linear since $n_i > 1$.

Assume now that C(R; V) is a ring for each *R*-module *V* but *R* is not strongly noncommutative. Then in the decomposition $R = T_1 \oplus \cdots \oplus T_i + M$ at least one T_i is a local ring, say T_1 . We know $R/\operatorname{rad} R \simeq K_1 \oplus S_2 \oplus \cdots \oplus S_i$ where K_1 is a field and each S_i is a simple ring. Also under the homomorphism $R \rightarrow$ $R/\operatorname{rad} R$, $T_1 \rightarrow K_1$, $T_2 \rightarrow S_2$, ..., $T_i \rightarrow S_i$. Thus there exists a maximal ideal *I* containing T_2, T_3, \ldots, T_i and rad *R* such that $R/I \simeq K_1$. Under the action $r\bar{k} = r\bar{k}$, R/I is an irreducible *R*-module. Also $V = R \oplus R/I \oplus R/I$ is a faithful *R*-module under componentwise action. If we let $W = R/I \oplus R/I$ then C(R; W)can be embedded in C(R; V) as follows. For $\hat{g} \in C(R; W)$, define $g: V \rightarrow V$ by $g(r + \bar{k}_1 + \bar{k}_2) = \hat{g}(\bar{k}_1 + \bar{k}_2)$. We note further that since R/I is a field, $\operatorname{Ann}_R(W)$ = I and so $C(R; W) \simeq C(R/I; W) \simeq C(K_1; W)$. Since $\dim_{K_1} W = 2$, it follows from Theorem 1 of [5] that $C(K_1; W)$ and hence C(R; W) are not rings. Consequently C(R; V) is not a ring, a contradiction. Thus it must be the case that *R* is strongly noncommutative.

For any finite ring R there exists an R-module V such that C(R; V) is a ring; e.g., let $V =_R R$. Moreover it is always the case that $\operatorname{End}_R(V) \subseteq C(R; V)$. We now give an example to show that it is possible for C(R; V) to be a ring and yet $C(R; V) \neq \operatorname{End}_R(V)$.

EXAMPLE 2.1. Let R be the ring consisting of the 3×3 matrices of the form

$$\begin{cases} a & b & c \\ 0 & a & 0 \\ 0 & 0 & a \end{cases}, \quad a, b, c \in GF(2).$$

Let

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} | x, y, z \in GF(2) \right\}.$$

A calculation shows that $\operatorname{End}_{R}(V) = R$. Another calculation gives $f(Rv) \subseteq Rv$ for each $f \in C(R; V)$ and for each $v \in V$. From this it follows that C(R; V) is a ring since if $v \in V$ then

$$f(g + h)v = f(gv + hv) = f(r_1v + r_2v) = (r_1 + r_2)f(v) = (fg + fh)v.$$

Let $\{e_1, e_2, e_3\}$ be the standard basis for the vector space V over GF(2). Then $V = R(e_1 + e_2 + e_3) \cup Re_2 \cup Re_3$ and the relation $f(e_1 + e_2 + e_3) = f(e_2) = f(e_3) = e_1$ determines a function in C(R; V). But f is not in $\operatorname{End}_R(V)$ since $f(e_2 + e_3) \neq f(e_2) + f(e_3)$. Hence $\operatorname{End}_R(V) \neq C(R; V)$.

In the next section we show that if C(R; V) is a semisimple ring then $C(R; V) = \text{End}_{R}(V)$.

3. Semisimple centralizer near-rings. Let C(R; V) be semisimple. Then the center of C(R; V) cannot contain nonzero nilpotent elements. Hence the center of Rcannot contain nilpotent elements so the center of R is a direct sum of fields. Thus if n is the characteristic of R, we have $n = p_1 p_2 \cdots p_s$ where the p_i 's are distinct primes. But this implies that $R = R_1 \oplus \cdots \oplus R_s$ where R_i has characteristic p_i . Because it has characteristic p_i , R_i is an algebra over the field $GF(p_i)$ and so the Wedderburn principal theorem [7, p. 164] holds for R_i . Consequently $R = \sum_{i,j} \bigoplus S_{ij} + N$ where each S_{ij} is a simple ring and N is a nilpotent ideal of R.

The following example shows that there exist semisimple centralizer near-rings that are not rings.

EXAMPLE 3.1. Let $R = \overline{R} \oplus F$ where F = GF(2) and \overline{R} is the simple ring of 2×2 matrices over GF(2). Let $V_i = \{\binom{x}{y} | x, y \in F\}$, i = 1, 2, and let R act on $V = V_1 \oplus V_2$ componentwise. Then $C(R; V) \cong C(\overline{R}; V_1) \oplus C(F; V_2)$ where $C(\overline{R}; V_1)$ is a simple ring while $C(F; V_2)$ is a simple near-ring which is not a ring. Hence C(R; V) is semisimple and not a ring.

For the remainder of this section we assume C(R; V) is semisimple and investigate when C(R; V) equals $\operatorname{End}_{R}(V)$. As we have seen $R = S_{1} \oplus \cdots \oplus S_{i} + N$ where each S_{i} is simple and N is a nilpotent ideal of R. We may assume $N \neq (0)$; otherwise R is semisimple and the results of §1 apply.

Assume t = 1, i.e. $R = S_1 + N$. From the proof of Lemma 1 of [5] it follows that C(R; V) contains a function f such that $g_1 f g_2 f = 0$ for all $g_1, g_2 \in C(R; V)$. Hence C(R; V) contains a nilpotent C(R; V)-subgroup and is not semisimple. So we may assume t > 1.

Let e_i denote the identity for S_i . Then $V = V_1 \oplus \cdots \oplus V_i$ where $V_i = \{v \in V | e_i v = v\}$. Also for i, j = 1, 2, ..., t let $N_{ij} = e_i N e_j$. Then $N = \sum N_{ij}$. For i = 1, ..., t let $B_i = \{w_i \in V_i | w_i = n_{ij}v_j \text{ for some } j \neq i, n_{ij} \in N_{ij}, v_j \in V_j\}$, and let W denote the subgroup of V generated by $B_1 \cup B_2 \cup \cdots \cup B_i$. Finally let $W_L = \{w \in V | f(w + v) = f(w) + f(v) \text{ for all } v \in V, f \in C(R; V)\}$.

LEMMA 3.1. W is an R-submodule of V, W_L is a subgroup of V and $W \subseteq W_L$.

PROOF. An element of W has the form $w = \sum n_{ij}v_j$ with $i \neq j$. For $n_{kl} \in N_{kl}$ and $n_{ij}v_j \in B_j$ we have $n_{kl}n_{ij}v_j \in B_k$ if $k \neq j$ and $n_{kl}n_{ij}v_j = n_{kl}(n_{ij}v_j) \in B_k$ if k = j. In this manner it is seen that $NW \subseteq W$. Also if $s \in S_1 \oplus \cdots \oplus S_l$ then $sn_{ij}v_j = (sn_{ij})v_j \in B_i$ since $sn_{ij} \in N_{ij}$. Hence $SW \subseteq W$ and W is an R-submodule of V.

The second part of the lemma is straightforward and is omitted. To prove the last part if suffices to show that $B_i \subseteq W_L$ for each *i*. To this end let $v_i = n_{ij}v_j \in B_i$, $f \in C(R; V)$. For $k \neq i$ we have $f(v_i + v_k) = f(v_i) + f(v_k)$. For $v'_i \in V_i$,

$$\begin{aligned} f(v_i + v'_i) &= f(n_{ij}v_j + v'_i) = f((n_{ij} + e_j)(v_j + v'_i)) \\ &= (n_{ij} + e_j)f(v_j + v'_i) = (n_{ij} + e_j)[f(v_j) + f(v_i)] = f(v_i) + f(v'_i). \end{aligned}$$

With this it is easy to see that $f(v_i + v) = f(v_i) + f(v)$ for all $v \in V$, as desired.

From the lemma, every $f \in C(R; V)$ is linear on W and moreover $f(W) \subseteq W$. Suppose now that C(R; V) is simple. Then the map $f \to f | W$ is an imbedding of C(R; V) into $\operatorname{End}_R(W)$. Also $W \neq (0)$, for otherwise $N_{ij}V_j = (0)$ for each $i \neq j$ and so each V_i is an R-module and C(R; V)-invariant. Hence C(R; V) would not be simple. Thus $W \neq 0$ and C(R; V) is a ring. This provides an alternate proof to Theorem 2 of [5].

LEMMA 3.2. If the simple ring S_i is not a field then every $f \in C(R; V)$ is linear on V_i .

PROOF. Again the restriction map $f \to f | V_i$ is a homomorphism of C(R; V) into $C(S_i; V_i)$. Since $C(S_i; V_i) = \text{End}_{S_i}(V_i)$, every $f \in C(R; V)$ is linear on V_i .

Let v_i be a nonzero element in V_i . Then from the chain of S_i -submodules of V_i ,

 $(0) \subseteq \ker N \cap V_i \subseteq \ker N^2 \cap V_i \subseteq \cdots \subseteq \ker N^{k-1} \cap V_i \subseteq V_i,$

we see that there exists a unique integer $\rho(v_i)$ such that $v_i \in \ker N^{\rho(v_i)} \cap V_i$ but $v_i \notin \ker N^{\rho(v_i)-1} \cap V_i$. We call $\rho(v_i)$ the rank of v_i . For completeness let 0 have rank 0. We note that for v_i , v'_i in V_i we have $\rho(v_i + v'_i) \leq \max\{\rho(v_i), \rho(v'_i)\}$.

LEMMA 3.3. If ker $N \cap V_i = \{0\}$ then every $f \in C(R; V)$ is linear on V_i .

PROOF. Assume $f \in C(R; V)$ such that f is not linear on V_i . Then there exist v_i , v'_i in V_i such that $f(v_i + v'_i) - f(v_i) - f(v'_i) \neq 0$. Among all such pairs $\{v_i, v'_i\}$ select one pair having an element of minimal rank, say $\{x_i, x'_i\}$, where x_i has minimal rank. For each $n_{ji} \in N_{ji}$ where $j \neq i$ we have $n_{ji}(f(x_i + x'_i) - f(x_i) - f(x'_i)) = 0$, since $n_{ji}x_i \in W$. Due to the minimality of x_i we also have

$$n_{ii}(f(x_i + x_i') - f(x_i) - f(x_i')) = 0$$

for each $n_{ii} \in N_{ii}$. Hence $f(x_i + x'_i) - f(x_i) - f(x'_i) \in \ker N \cap V_i$, a contradiction.

THEOREM 3.1. Let C(R; V) be a semisimple near-ring where R is not semisimple. Then $R = S_1 \oplus \cdots \oplus S_i + N$ where t > 1, each S_i is a simple ring and N is a nonzero nilpotent ideal of R. Moreover the following are equivalent.

- (i) C(R; V) is a ring.
- (ii) $C(R; V) = \operatorname{End}_{R}(V)$.
- (iii) For each i at least one of the following is true:
 - (a) S_i is not a field;
 - (b) S_i is a field and $\dim_{S_i}[\ker N \cap V_i] \leq 1$;
 - (c) $V_i \subseteq W$.

PROOF. The first part of the theorem has already been established. For the equivalences we start with (iii) \rightarrow (ii). From Lemma 3.2 if S_i is not a field then every $f \in C(R; V)$ is linear on V_i . The same conclusion is true if $V_i \subseteq W$. So we may assume that at least one S_i is a field, say S_1 , with $\dim_{S_i}[\ker N \cap V_1] < 1$ and $V_1 \not\subseteq W$. If ker $N \cap V_1 = (0)$ then Lemma 3.3 applies. Therefore, we may also assume ker $N \cap V_1$ is a 1-dimensional vector space over S_1 .

Let $W_1 = W \cap V_1$ and $S = S_1 \oplus \cdots \oplus S_l$. V is a completely reducible S-module and we have, as S-modules, $V = \overline{V_1} \oplus W_1 \oplus X$ where $X = V_2 \oplus \cdots \oplus V_l$, and $V_1 = \overline{V_1} \oplus W_1$. Note that $W_1 \oplus X$ is an R-module and is C(R; V)-invariant. We select an S_1 -basis $\{v_1, v_2, \ldots, v_l, w_1, \ldots, w_m\}$ for $\overline{V_1} \oplus W_1$ as follows. Let $\{w_1, \ldots, w_m\}$ be a basis for W_1 . Let $\{v_{i_1}, \ldots, v_l\}$ be a basis for $\overline{V_1}^1 = \{v \in \overline{V_1} | N_{11}v \subseteq W_1\}$. Let $\{v_{i_2}, \ldots, v_{i_l}\}$ be a basis for $\overline{V_1}^2 = \{v \in \overline{V_1} | N_{11}v \subseteq \overline{V_1}\}$, etc. Using the fact that N_{11} is nilpotent, this process terminates to give the desired basis $\{v_1, \ldots, v_l, w_1, \ldots, w_m\}$ for $\overline{V_1} \oplus W_1$. Thus every $v \in V$ can be uniquely represented in the form $v = s_{11}v_1 + \cdots + s_{1l}v_l + w + x$ where $s_{1i} \in S_1$, $w \in W_1, x \in X$.

Let k be a nonzero element in ker $N \cap V_1$. The function $f: V \to V$ defined by

 $f(s_{11}v_1 + \cdots + s_{1l}v_l + w + x) = s_{11}k$ belongs to C(R; V). Let L = C(R; V)f, the C(R; V)-subgroup generated by f. If $k \in W_1$ then $g(k) \in \ker N \cap W_1$ for each $g \in C(R; V)$, and thus $g_1 fg_2 f = 0$. Thus $L^2 = (0)$, a contradiction to C(R; V) being semisimple. Hence ker $N \cap W_1 = (0)$ and, since \overline{V}_1 was an arbitrary complement of W_1 in V_1 , we may reselect \overline{V}_1 if necessary such that ker $N \cap V_1 \subseteq \overline{V}_1$; i.e. $V_1 = \widetilde{V}_1 \oplus (\ker N \cap V_1) \oplus W_1$ where $\overline{V}_1 = \widetilde{V}_1 \oplus (\ker N \cap V_1)$. If $\widetilde{V}_1 \neq (0)$ then we may assume our first basis element v_1 belongs to \widetilde{V}_1 . But once again, if f is defined as above, we get $L^2 = (0)$. Hence $\widetilde{V}_1 = (0)$ and $\overline{V}_1 = \ker N \cap V_1$. We now have $V = (\ker N \cap V_1) \oplus W_1 \oplus X$. Since

$$\dim_{S_1} (\ker N \cap V_1) = 1,$$

each $f \in C(R; V)$ is trivially linear on ker $N \cap V_1$ and hence on all of V_1 . This shows that (iii) \rightarrow (ii).

Suppose (i) is true. Then we may assume by way of contradiction that some S_i is a field, say S_1 , that $\dim_{S_1}[\ker N \cap V_1] > 1$ and that $V_1 \not\subseteq W$. Because C(R; V) is semisimple the arguments above imply $V = (\ker N \cap V_1) \oplus W_1 \oplus X$ where W_1 and X are defined as before. But ker $N \cap V_1$ and $W_1 \oplus X$ are both *R*-modules and both C(R; V)-invariant. Hence

$$C(R; V) \cong C(S_1; \ker N \cap V_1) \oplus C(R; W_1 \oplus X).$$

Since dim_{S₁}(ker $N \cap V_1$) > 1, the first summand is not a ring. Hence (i) \rightarrow (iii). Since (ii) \rightarrow (i) is obvious the proof is complete.

As a consequence of this theorem we note that if C(R; V) is a simple ring where R is not a field then $C(R; V) = \text{End}_{R}(V)$. This was stated as Theorem 3 in [5] but the proof given there is incorrect.

We also note that as a consequence of the proof of Theorem 3.1 and the preliminaries to it we have the following structural result for semisimple near-rings of the form C(R; V).

COROLLARY. If C(R; V) is semisimple then $C(R; V) = A_1 \oplus \cdots \oplus A_i$, where each A_i is either a simple ring or a simple near-ring of the form $C(F_i; V_i)$ where V_i is a vector space over a field F_i . Moreover if R is not semisimple then at least one A_i must be a ring.

PROOF. It remains to prove the last part of the corollary. Since C(R; V) is semisimple then $R = S_1 \oplus \cdots \oplus S_k + N$ where $N = \operatorname{rad} R$ and each S_i is simple with identity e_i . As before let $N_{ij} = e_i N e_j$ and let W be the R-submodule of V as in Lemma 3.1. If W = (0) then $N_{ij}V_j = (0)$ for each $i \neq j$ where V_j is the 1-space for e_i . This means each V_i is an R-module as well as C(R; V)-invariant. Hence

$$C(R; V) \simeq C(R_1; V_1) \oplus \cdots \oplus C(R_k; V_k)$$

where $R_i = S_i + N_{ii}$. Since C(R; V) is semisimple each $C(R_i; V_i)$ is semisimple [8, p. 146]. We show now that if $N_{ii} \neq (0)$ then $C(R_i; V_i)$ cannot be semisimple. Suppose $N_{ii}^{l} = (0)$ but $N_{ii}^{l-1} \neq (0)$. Let $W_1 = \ker N_{ii}^{l-1} = \{v \in V_i | nv = 0 \text{ for all } n \in N_{ii}^{l-1}\}$, a proper subgroup of V_i , an S_i -submodule, and $C(R_i; V_i)$ -invariant. As an S_i -module V_i is completely reducible so $V_i = W_1 \oplus W_2$, an S_i -module direct sum. As constructed in the proof of Lemma 1 of [5] there exists a nonzero $f \in C(R_i; V_i)$ such that $f(V_i) \subseteq W_1$ and $f(W_1) = \{0\}$. Let $I = \{f \in C(R_i; V_i) | f(V_i) \subseteq W_1$ and $f(W_1) = \{0\}$. Then I is a nilpotent $C(R_i; V_i)$ -subgroup $(I^2 = (0))$ and hence $C(R_i; V_i)$ is not semisimple. So each $N_{ii} = (0)$ and since $N_{ii}V = (0)$, $N_{ii} = (0)$ if $i \neq j$. Thus R is semisimple.

So we may assume $W \neq (0)$. Since W is C(R; V)-invariant the map $f \rightarrow f | W$ is a homomorphism of C(R; V) into the ring $\operatorname{End}_{R}(W)$. Hence a nontrivial homomorphic image of C(R; V) is a ring and this implies at least one simple component of C(R; V) is a ring [8, p. 55].

References

1. G. Betsch, Some structure theorems on 2-primitive near-rings, Rings, Modules and Radicals (Proc. Colloq., Keszthely, 1971), Colloq. Math. Soc. János Bolyai, Vol. 6, North-Holland, Amsterdam, 1973, pp. 73-102.

2. C. J. Maxson and K. C. Smith, The centralizer of a group automorphism, J. Algebra 54 (1978), 27-41.

3. _____, The centralizer of a group endomorphism, J. Algebra 57 (1979), 441-448.

4. ____, The centralizer of a set of group automorphisms, Comm. Algebra 8 (1980), 211-230.

5. _____, Simple near-ring centralizers of finite rings, Proc. Amer. Math. Soc. 75 (1979), 8-12.

6.____, Near-ring centralizers, Proc. Ninth Annual USL Math. Conf. Research Series 48, Univ. Southwestern Louisiana, April, 1979, pp. 49-58.

7. B. R. McDonald, Finite rings with identity, Dekker, New York, 1974.

8. G. Pilz, *Near-rings*, The Theory and its Applications, North-Holland Math. Studies, No. 23, North-Holland, Amsterdam, New York and Oxford, 1977.

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843