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CENTRALIZER NEAR-RINGS THAT ARE
ENDOMORPHISM RINGS

CARLTON J. MAXSON AND KIRBY C. SMITH

ABSTRACT. For a finite ring R with identity and a finite unital R-module V the set
C(R; V)= {f: V= V|f(av) = af(v) for all a' € R, v € V} is the centralizer
near-ring determined by R and V. Those rings R such that C(R; V) is a ring for
every R-module V are characterized. Conditions are given under which C(R; V) is
a semisimple ring. It is shown that if C(R; V') is a semisimple ring then C(R; V) =
Endg(¥).

1. Preliminaries. Let G be a group and I' a semigroup of endomorphisms of G.
Then C(T'; G) = {f: G— G|f(0) = 0 and f(ya) = yf(a) forally ET,a € G} isa
near-ring under the operations of function addition and function composition, and
is called the centralizer near-ring determined by I' and G. Moreover, every
near-ring with identity arises in this manner [6, p. 50]. It has been shown by Betsch
[1] that N is a finite simple near-ring with identity if and only if there exists a finite
group G and a fixed point free group of automorphisms I' of G such that
N = C(T'; G). The structure of C(I'; G) for various G’s and I'’s has been investi-
gated in [2], [3] and [4].

Throughout this paper R will denote a finite ring with 1 and ¥V a finite unital
R-module. The corresponding centralizer near-ring is C(R; V) = {f: V - V| f(rv)
= rf(v) for all r € R, v € V'}. In dealing with C(R; V') we may assume, without
loss of generality, that V¥ is a faithful R-module, for we have C(R; V) = C(R; V)
where V is a faithful R-module, R = R/Ann(V).

In [S] we showed that if R is a finite simple ring then C(R; V) is a simple
near-ring. This result is used to obtain the following generalization.

PROPOSITION. Let R be a finite semisimple ring and let V be a finite R-module.
Then C(R; V) is a semisimple near-ring.

PROOF. We have R =S, @ - - - ©S, where each S, is a simple ring. Let ¢,
denote the identity of S;. If ¥, = {v €E V|gv =v} then V=V, ® - - - ®V, and
f(V)) C V, for each f € C(R; V). Further, if f, denotes the restriction of f to ¥
then the map ¢: C(R; V) > C(S;; V)@ - - - ®C(S,; V,) given by &(f) =
{fi» - - ., £ is a near-ring homomorphism. The map is onto, for if {f,,...,f) is
in C(S;; V) ® - - - ®C(S,; V,) extend each f, to all of ¥ by fi(v, + - - - +0v) =
f(v). Then f=3 f is an element of C(R; V) such that ¢(f) = {Sfpooon k). To
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show that ® is one-to-one we note that ¢f(v, + - - - +v,) = fle,v,) = f(v), i =
..., ¢t implies flv, + --- +v) = flo) + - -~ +f(01) =f|(vl) +-- +f,(0,).
Hence if ¢(f) = 0 then f = 0. Therefore ¢ is an isomorphism and from Theorem 1
of [5] each C(S;; V,) is a simple near-ring.

A type of converse to the proposition is also true. If C(R; V) is a semisimple
near-ring for every R-module V then in particular C(R; R) is semisimple. But
C(R; R) is anti-isomorphic to R so R is a semisimple ring.

Again using Theorem 1 of [S]if R-= S, ® - - - DS, S; simple and not a field, or
S; is a field and dimg(¥;) = 1, we have C(R; V) is a semisimple ring. Moreover, in
this setting, C(R; V') = Endg(V). (See proof of Theorem 1 of [5].)

It is the goal of this paper to consider the following questions which arise
naturally from the above remarks.

A. Which finite rings R have the property that C(R; V) is a ring for every
R-module V?

B. If C(R; V) is a semisimple ring when is C(R; V) = Endg(¥)?

C. Which semisimple near-rings have the form C(R; V') for some pair (R, V)?

In the next section we answer question A. In §3 we show that if C(R; V) is a
semisimple ring then one always has C(R; V) = Endg(V). Moreover if C(R; V) is
semisimple then information about the structure of the simple components is
obtained, giving a partial answer to question C.

2. Strongly noncommutative rings. In this section we characterize those rings R
such that C(R; V) is a ring for every V. Recall that if R is a finite ring with identity
then R=T+ M where TN M = (0), M is a subgroup of rad R and T =T,
@ - - ®T, T, acomplete n, X n, matrix ring over a local ring L; with T/rad T =
R/rad R [7, p. 162]. Moreover there exist mutually orthogonal idempotents
e,...,e in R such that 1 = ¢, + --- +¢ and T, = ¢Re; for each i. Also
R/rad R = S, ® - - - ®S, where each S is an n; X n, simple matrix ring and 7; is
mapped onto S; under the natural homomorphism R — R/rad R (see [7, p.
162-163]). We say R is strongly noncommutative if n, > 1 fori=1,2,...,¢.

THEOREM 2.1. For a finite ring R with fdentity the following are equivalent:
(1) C(R; V) is a ring for every faithful R-module V';

(ii) C(R; V) = Endg(V) for every faithful R-module V',

(iii) R is strongly noncommutative.

PROOF. Since (ii) implies (i) is clear it remains to show (iii) implies (ii) and (i)
implies (iii).

Suppose R is strongly noncommutative where, as above, R=T+ M, T =T,
@ - - - @T, with each T, an n, X n, matrix ring over a local ring L; and n; > 1 for
each i. If V is a faithful R-module then V is a faithful, unital 7-module and
C(R; V) C C(T; V). Thus it suffices to show that for each f € C(T; V') and for
each v, w € V, f(v + w) = f(v) + f(w). To this end let ¢, be the identity for T;
then V=V, ®--- ®V, where ¥V, =¢V. We have f(v,+ - - +9v) = f(v)
+ - +f(1), v, € V, so it suffices to show f(v;! + v?) = f(v}) + f(v}) for every
v, v? € V,. Since f(V;) C V,, f|V; belongs to C(T;; V;). Using an argument almost
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identical to the proof of Theorem 1 of [5], it is seen that f| ¥ is linear since n, > 1.

Assume now that C(R; V) is a ring for each R-module ¥ but R is not strongly
noncommutative. Then in the decomposition R=T,® - - - T, + M at least
one T, is a local ring, say T,. We know R/rad R=K,® S, ® - - - B S, where K|
is a field and each S; is a simple ring. Also under the homomorphism R —
R/rad R, T, > K,, T,> S,, ..., T,— S,. Thus there exists a maximal ideal /
containing T,, T3, ..., T, and rad R such that R/I = K,. Under the action
rk =rk, R/1 is an irreducible R-module. Also ¥ = R @ R/I ® R/ is a faithful
R-module under componentwise action. If we let W = R/I @ R/I then C(R; W)
can be embedded in C(R; V) as follows. For § € C(R; W), define g: ¥V — V by
g(r + k; + ky) = g(k, + k,). We note further that since R/ is a field, Ann(W)
= I and so C(R; W) = C(R/I; W) = C(K,; W). Since dim, W =2, it follows
from Theorem 1 of [5] that C(K;; W) and hence C(R; W) are not rings. Conse-
quently C(R; V) is not a ring, a contradiction. Thus it must be the case that R is
strongly noncommutative.

For any finite ring R there exists an R-module V such that C(R; V) is a ring;
e.g., let V = R. Moreover it is always the case that End,z(¥V) C C(R; V). We now
give an example to show that it is possible for C(R; V) to be a ring and yet
C(R; V) # Endg(V).

ExAMPLE 2.1. Let R be the ring consisting of the 3 X 3 matrices of the form

a b ¢
0 a 0|, ab,ceE GFQ).
0 0 a

{(g).x,y,z < oro)|

A calculation shows that Endg(¥) = R. Another calculation gives f(Rv) C Rv for
each f € C(R; V) and for each v € V. From this it follows that C(R; V) is a ring
since if v € V then

f(g + h)o = f(go + hv) = f(r,o + ryv) = (r, + r)f(v) = (fg + fh)v.
Let {e,, e, e;} be the standard basis for the vector space ¥V over GF(2). Then
V = R(e, + e, + e3) U Re; U Re, and the relation f(e, + e, + ;) = f(e,) = f(ey)
= e, determines a function in C(R; V). But f is not in End,( V) since f(e, + e;) #
f(ey) + f(e;). Hence Endg(V) # C(R; V).
In the next section we show that if C(R; V) is a semisimple ring then C(R; V) =
Endg(V).

3. Semisimple centralizer near-rings. Let C(R; V') be semisimple. Then the center
of C(R; V) cannot contain nonzero nilpotent elements. Hence the center of R
cannot contain nilpotent elements so the center of R is a direct sum of fields. Thus
if n is the characteristic of R, we have n = p,p, - - - p, where the p,’s are distinct
primes. But this implies that R = R, @ - - - ® R, where R; has characteristic p;.
Because it has characteristic p,, R; is an algebra over the field GF(p,;) and so the
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Wedderburn principal theorem [7, p. 164] holds for R;. Consequently R =2, @ S;
+ N where each S; is a simple ring and N is a nilpotent ideal of R.

The following example shows that there exist semisimple centralizer near-rings
that are not rings.

ExaMmpLE 3.1. Let R = R ® F where F = GF(2) and R is the simple ring of
2 X 2 matrices over GF(2). Let V, = {(})|x,y € F}, i=1, 2, and let R act on
V =V, ® ¥V, componentwise. Then C(R; V) = C(R; V,) ® C(F; V,) where
C(R; V,) is a simple ring while C(F; V,) is a simple near-ring which is not a ring.
Hence C(R; V) is semisimple and not a ring.

For the remainder of this section we assume C(R; V) is semisimple and investi-
gate when C(R; V) equals Endg(V). As we have seen R= S, @ --- &S, + N
where each S; is simple and N is a nilpotent ideal of R. We may assume N # (0);
otherwise R is semisimple and the results of §1 apply.

Assume ¢t = 1,i.e. R = S; + N. From the proof of Lemma 1 of [5] it follows that
C(R; V) contains a function f such that g, fg,f=0 for all g,, g, € C(R; V).
Hence C(R; V) contains a nilpotent C(R; V)-subgroup and is not semisimple. So
we may assume ¢ > 1.

Let ¢; denote the identity for S;. Then V=V, @& - -- @V, where V, = {v €
Vl|ev = v}. Also for i,j=1,2,...,t let N; = ¢,Ne;. Then N =3 N,;. For i =
1,...,tlet B, = {w; € V|w, = n;v, for some j # i, n; € Ny, v; € V;}, and let W
denote the subgroup of V generated by B, U B, U * - - U B, Finally let W, =
{weE V|f(w+v)=flw)+ f(v)forallv € V, f € C(R; V)}.

LeMMA 3.1. W is an R-submodule of V, W, is a subgroup of V and W C W,.

PROOF. An element of W has the form w = X n;v; with i #j. For n,; € N, and
n;v; € B; we have nyn;v; € By if k #j and nyn,v; = ny(nyv) € By if k = j. In
this manner it is seen that NW C W. Also if s € §;® - - - &S, then snyv, =
(sn;)v; € B; since sn; € N;. Hence SW C W and W is an R-submodule of V.

The second part of the lemma is straightforward and is omitted. To prove the
last part if suffices to show that B, C W, for each i. To this end let v; = n;v; € B,,

f € C(R; V). For k # i we have f(v; + v,) = f(v,) + f(v,). Forv] € V,,
Ao, + ) = f(nyi'?[ + U:) = f((”q + ej)(vj + U./))
= (n; + ¢)f(v; + v)) = (n; + €)[ f(v) + f(v)] = f(v) + f(v)).

With this it is easy to see that f(v; + v) = f(v;) + f(v) for all v € V, as desired.
From the lemma, every f € C(R; V) is linear on W and moreover f(W) C W.
Suppose now that C(R; V) is simple. Then the map f— f|W is an imbedding of
C(R; V) into Endg(W). Also W # (0), for otherwise N;V; = (0) for each i #j and
so each V; is an R-module and C(R; V)-invariant. Hence C(R; V') would not be
simple. Thus W # 0 and C(R; V) is a ring. This provides an alternate proof to

Theorem 2 of [5].

LEMMA 3.2. If the simple ring S; is not a field then every f € C(R; V) is linear on
V.

l
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PROOF. Again the restriction map f— f|V; is a homomorphism of C(R; V) into
C(S;; V). Since C(S;; V;) = Endg(V)), every f € C(R; V) is linear on V.
Let v; be a nonzero element in V. Then from the chain of S;-submodules of V,

(O)CkerNNV,CkerN>’NV,C--- Cker N 'n Vv, cV,

we see that there exists a unique integer p(v;) such that v; € ker N 0 ¥, but
v, & ker N*®@~1 0 ;. We call p(v;) the rank of v,. For completeness let 0 have
rank 0. We note that for v, v in V; we have p(v;, + v)) < max{p(v), p(v})}.

LeMMA 3.3. Ifker N N V, = {0} then every f € C(R; V) is linear on V..

1

PrOOF. Assume f € C(R; V) such that f is not linear on V. Then there exist v,
v/ in V; such that f(v; + v)) — f(v) — f(v)) # 0. Among all such pairs {v,, v/} select
one pair having an element of minimal rank, say {x;, x/}, where x; has minimal
rank. For each n; € N; where j # i we have n,(f(x; + x{) — f(x) — f(x))) = 0,
since n;x; € W. Due to the minimality of x; we also have

n(fx; + x)) = f(x) = f(x)) =0
for each n; € N;. Hence f(x; + x/) — f(x;) — f(x]) € ker N N V,, a contradiction.

THEOREM 3.1. Let C(R; V) be a semisimple near-ring where R is not semisimple.
Then R=S,® --- @S, + N where t > 1, each S; is a simple ring and N is a
nonzero nilpotent ideal of R. Moreover the following are equivalent.

(i) C(R; V) is a ring.

(if) C(R; V) = Endg(V).

(iil) For each i at least one of the following is true:

(a) S, is not a field;
(b) S; is a field and dimg[ker N N V] < ;
© V,C W.

PrOOF. The first part of the theorem has already been established. For the
equivalences we start with (iii) —» (ii). From Lemma 3.2 if S; is not a field then
every f € C(R; V) is linear on V,. The same conclusion is true if ¥; C W. So we
may assume that at least one S; is a field, say §,, with dimg[ker N 0 ¥,] < 1 and
Vig W. If ker N n ¥V, = (0) then Lemma 3.3 applies. Therefore, we may also
assume ker N N ¥V, is a 1-dimensional vector space over S,.

Let W, =Wn V,andS =S, ® - - - ©S,. Vis a completely reducible S-mod-
ule and we have, as S-modules, V =V, ® W, ® X where X=V,® - - - @V,
and ¥V, = V, ® W,. Note that W, @ X is an R-module and is C(R; V)-invariant.

We select an S,-basis {v;, 05, ..., 0, Wy, ..., w,) for ¥, @ W, as follows. Let
{wy,...,w,} be a basis for W, Let {v,,...,v) be a basis for V] = (v €
ViINyo C W) Let {v,,...,0,,...,0) be a basis for ¥} = {v € ¥|[N;jv C
V'), etc. Using the fact that N, is nilpotent, this process terminates to give the
desired basis {v, ..., 0, W, ..., w,} for ¥, ® W,. Thus every v € ¥ can be
uniquely represented in the form v = 5,0, + - - - +s,,0, + w + x where s,; € §,,

weE W,x€EX.
Let k be a nonzero element in ker N N V,. The function f: V — V defined by



194 C. J. MAXSON AND K. C. SMITH

Sfspyo, + - - - +sy0,+ w+ x) =5,k belongs to C(R; V). Let L = C(R; V),
the C(R; V)-subgroup generated by f. If k € W, then g(k) € ker N N W, for
each g € C(R; V), and thus g, fg,f=0. Thus L?=(0), a contradiction to
C(R; V) being semisimple. Hence ker N N W, = (0) and, since 17, was an arbi-
trary complement of W, in ¥,, we may reselect V, if necessary such that
ker NNV, C V; ie V=V, ®kerN N V,)® W, where V, = V,@(kerN
N vy If Vl (0) then we may assume our first basis element v, belongs to Vl
But once again, if f is defined as above, we get L2 = (0). Hence 17, = (0) and
V,=ker N N V,. Wenowhave ¥ = (ker N N V,) ® W, ® X. Since

dgm (kerNNnV)=1,
1

each f € C(R; V) is trivially linear on ker N N ¥, and hence on all of V,. This
shows that (iii) — (ii).

Suppose (i) is true. Then we may assume by way of contradiction that some S; is
a field, say S, that dimg[ker N N V] > | and that V, ¢ W. Because C(R; V) is
semisimple the arguments above imply V' = (ker N N V) ® W, ® X where W,
and X are defined as before. But ker N N V, and W, @ X are both R-modules
and both C(R; V)-invariant. Hence

C(R; V)=C(S;;ker NN V) ® C(R; W, ® X).
Since dimg (ker N N ¥;) > 1, the first summand is not a ring. Hence (i) — (iii).
Since (ii) — (i) is obvious the proof is complete.

As a consequence of this theorem we note that if C(R; V) is a simple ring where
R is not a field then C(R; V) = Endg(V). This was stated as Theorem 3 in [5] but
the proof given there is incorrect.

We also note that as a consequence of the proof of Theorem 3.1 and the

preliminaries to it we have the following structural result for semisimple near-rings
of the form C(R; V).

COROLLARY. If C(R; V) is semisimple then C(R; V)= A, ® - - - @A, where
each A, is either a simple ring or a simple near-ring of the form C(F;; V;) where V, is
a vector space over a field F,. Moreover if R is not semisimple then at least one A,
must be a ring.

PrOOF. It remains to prove the last part of the corollary. Since C(R; V) is
semisimple then R = S, ® - - - ®S, + N where N = rad R and each S; is simple
with identity ¢;. As before let N; = ¢;Ne; and let W be the R-submodule of V as in
Lemma 3.1. If W = (0) then N;¥; = (0) for each i 7 where V; is the 1-space for
¢;. This means each ¥ is an R-module as well as C(R; V)-invariant. Hence

C(R; V)= C(R;; V) ® - - - ®C(R,; V)

where R, = S; + N,. Since C(R; V) is semisimple each C(R;; V) is semisimple [8,
p. 146]. We show now that if N; = (0) then C(R;; V;) cannot be semisimple.
Suppose N = (0) but N;~' = (0). Let W, =ker Nj~! = {0 € V,|nv = 0 for all
n € N/}, a proper subgroup of V,, an S;-submodule, and C(R;; V,)-invariant. As
an S;-module V; is completely reducible so V, = W, ® W,, an S;-module direct
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sum. As constructed in the proof of Lemma 1 of [5] there exists a nonzero
f € C(R; V,) such that f(V) C W, and f(W)) = {0}. Let I = {f €
C(R;; V)IAV;) C W, and f(W,) = {0}}. Then [ is a nilpotent C(R;; V;)-subgroup
(I* = (0)) and hence C(R; V;) is not semisimple. So each N, = (0) and since
N,V = (0), N; = (0) if i # . Thus R is semisimple.

So we may assume W # (0). Since W is C(R; V)-invariant the map f — f|Wis a
homomorphism of C(R; V) into the ring Endg(W). Hence a nontrivial homomor-
phic image of C(R; V) is a ring and this implies at least one simple component of
C(R; V) is a ring [8, p. 55].
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