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THE SECOND COEFFICIENT OF

UNIVALENT BIEBERBACH-EILENBERG FUNCTIONS

NEAR THE IDENTITY

J. A. HUMMEL1

Abstract. An asymptotic expansion is found for the maximum \b2\, in terms of

ß = 1 — |¿||, for functions F(z) — bxz + b2z2 + • • • which are in the class of

univalent Bieberbach-Eilenberg functions and which are near the identity (6, near

1). The first two terms of this expansion are the same as the expansion of |è2| in

terms of 1 — ¿j, for the functions which map the unit disc onto the interior of

circles passing through ± 1.

1. The class S of univalent Bieberbach-Eilenberg functions consists of those

functions F(z) = bxz + b2z2 + • • • which are analytic and univalent in the unit

disc U = {z: \z\ < 1}, satisfy F(0) = 0 and are such that F(z) ■ F(Ç) =£ 1, for any

z, f G U [1], [3]. Some of the interest in this class derives from the observation that

if fiz) is in S, the usual class of normalized univalent functions, and if l/q £ fiU),

then

F(z) = **('- g^))1/2

1 ± (1 - qf(z)y/2

is in S. Conversely, if F G S then the functions

F(z)

F'(0)[l ± F(z)Y

are in S [4]. It follows that F(z) E & near the identity, F(z) = z, correspond in a

natural way to/(z) near the Koebe function, fiz) = z/(l + z)2.

It is interesting to observe that the transformation (1.1) is inherent in

Bieberbach's paper [1]. Indeed the class S appeared quite naturally in that paper

when a transformation equivalent to (1.1) was applied as an aid in solving a

specific extremal problem.

In [6], a method was developed for calculating the maximum of |Z>2| for a given

1^,1 in the class S. Numerical calculations suggested that for bx > 0 and near 1,

1 — ¿i = o(|Z>2|). See Figure 2 in [6]. These methods were extended in [5] to allow

the computation of the entire bx, b2 coefficient body. There it was shown that for

bx > 0 (as can be assumed) and near 1, b2 lies in a roughly elliptical shaped region

/w =,.: K'„, .l2 (Lo
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whose "semiminor axis" is 26,(1 — bx) and whose "semimajor axis" is much larger

so that the "ellipse" becomes very thin as bx -» 1.

An upper bound for the "semimajor axis" of this region is easily found. From

(1.1) and the fact that the second coefficient of a function in S is bounded by 2, it

follows that for a given bx, b2 must lie in the lenticular region defined by

\b2 ± 2b\\ < 26,. The half width of this region is 26,(1 — bx), the same as the

minimum dimension of the above mentioned "elliptical" region. The vertex of this

lenticular region is at 2/6,(1 — b2)x/2, and this defines an upper bound for the

maximum dimension of the ¿>2 region.

Numerical calculations indicate that for 6, near 1 the functions in S which

achieve the maximum |62| appear to map U to nearly circular regions whose

boundaries pass through ± 1. See Figure 7(c) in [5]. This immediately raises the

question of how closely the functions

0 - r2)x/2z

which map U onto the interior of a circle passing through ± 1 come to achieving

the maximum |62|. The functions (1.2), which are clearly in S, were shown by

Jenkins [7] to maximize |F(z)| with |z| = r in the class S.

For a function Fr(z) of (1.2), bx = (1 - r2)1'2 and 62 = ,>(1 - r2)l/2. Thus, for

these functions 62 = ibx(l — b2)x/2. This is exactly one half of the upper bound

found above. Since the actual maximum must lie between these two, it is clear that

1 — bx = o(\b2\) is true for the maximum |62|'s. The problem is, how much larger

can the actual maximum be than the ¿>2 found from (1.2)?

In the remainder of this paper we obtain the first few terms of an asymptotic (or

series) expansion of the maximum |¿>2| in terms of ß = 1 — bx to show that the

Jenkins function gives an extremely close approximation to this maximum. Indeed,

the first two terms of the expansion coincide.

Theorem. If F(z) = bxz + b2z2 + . . . is such that bx > 0 and \b2\ is a maximum

for F E & with this bx, then

i32 = /2>/^'/2|1_^ + _85_/82__55_^3 + ...j (13)

for ß = 1 — bx near 0. This may be compared with the value for b2 given by the

function Fr(z) of (1.2),

b'2 = a^ß^i - |j +1¿- + 2^ + ... ) (,.4)

and the minimum \b2\ on the boundary of the set of all b2 with bx fixed,

b'i = 26,(1 - bx) = 2/3(1 - ß). (1.5)

Observe that from (1.5) and (1.3) the maximum dimension of the "ellipse" is

approximately the square root of the minimum dimension as 6, -» 1.

Expansion (1.4) is obtained directly and can be left to the reader. The proof of

(1.3) is outlined in the following sections. The calculations are straightforward but
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rather tedious to do and check. It would be much more satisfactory to be able to

obtain this expansion more directly, say from the Schiffer equation, but the writer

sees no immediate way to do so that is not equivalent to what is done here.

However, should such a method be devised, it can be checked against the

expansion given in the theorem.

2. Some years ago, Jenkins [8] showed that the maximum \b2\ in the class S for a

given bx was achieved by an (essentially unique) function in a one parameter family

which he defined implicitly in terms of the mappings. In [6] and [5] this same result

was obtained (up to the uniqueness), but the relationships between the parameter,

bx, and b2 were obtained in a form more convenient for explicit numerical

calculation.

(The author is indebted to the referee for calling his attention to reference [9]. In

this paper Kühnau proved the bound |62| < .58 .. . for the class of elliptic

univalent functions. Jenkins [8] has shown that this class and the class & have the

same external functions. Thus the bound for \b2\ obtained in [6] has in principle

been known since 1965.)

Following the notation in [5], let B be any complex number in the first quadrant

which is not real with 0 < B < 1. Set

P(B)=f[(w + B)/(l-w2)]l/2dw, (2.1)

Q(B) = if~'[(w + B)/ (1 - w2)]1/2 dw, (2.2)

where the integrations are along the line segments joining the limits. Suppose

Re{Q(B)/P(B)) > 0. This will be true for \B\ > 1 with the proper choice of

branches of the roots (see [5]). Determine the real C such that

Re{Q(B)/P(B)} - Q(C)/P(C),       K C < oo. (2.3)

This C is unique as shown in [6]. Set

A = P(C)2/P(B)2. (2.4)

Then the pair

bx = \A\,       b2 = 2Ä(C- AB), (2.5)

lies on the boundary of the bx, b2 coefficient domain for &. The maximum \b2\ for

a given bx is obtained when B is purely imaginary, say B = i ft, u > 0.

3. The functions P(B) and Q(B) can be evaluated in terms of standard elliptic

integrals much as in [6] and these can be expanded by the known asymptotic

expansions as given in [2]. However, the complications involved make it no more

difficult to do the expansion directly. Thus, setting w = sin 9 in (2.1) and assuming

\B\ > 1,

p(B) = Bi'2r/2\i +
!/•*

dß « 5'/2 V ( 1/2) r/2B-> sin.fl da
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or

P(B) - wB^P^B),

PÁB) =    2   P2n,B-2m,
771 = 0

h--<-•>-( 2i2)(T)-
The expansion for (2(^) is slightly more difficult. Let z = -w. Then

= 5'/2p5   2 (-iy+k(l/2){-l/2)zJ-2k-lB-ldz
J\  j=o k=o \  J   }\    k   J

(3.1)

= BX/2PX(B) log 5 + Bx>2 2 &£"*
7C=0

where

/ 1/2 \5_By_/-i/2\

(3.2)

The three sums in (3.2) are probably available somewhere in the literature, but

after a short, unsuccessful search, it was found easy enough to evaluate them

directly. Thus, to find the first, we set ß2k+, = (^/2x)tpQ(l) where

~        (-lfr*      /-l/2\
«M-£0(2k-y+i)[ j  j'

Then (d/dx)(x-2k-ltp0(x)) = -x-2k~2(l - x2)~l/2. Integrating by making the trigo-

nometric substitution and using the well-known reduction formula gives

tp0(x) = CQx2k+x + (1 - x2)l/2[A2k+x + A^x2 +■■■ +Axx2k]

where the Av are computable constants and c0 is the constant of integration. Since

tp0(x) is even, c0 must be zero and hence <p0(l) = 0. Thus all ß2k+x = 0.

To evaluate the first sum in the formula for ß2k set

(-1)V«PiW = s -í1/2l
k) \ j Jy-0   0" - 2k)

j^lk

Then (d/dx)(X-2ktpx(x)) = x'2k'x(\ - x)x/2 - Ç^x-1 and hence

->,(*) = c,x2* + (1 - *)1/2[i4» + /*»_,* +

+ ^2Mog[l + (l-x)1/2]

-M,* 2*-r
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where, for k > 0,

A» = -1/2*.

while when k = 0, <p,(x) = c, + 2(1 - x)1/2 - 2 log[l + (1 - x)1/2].

Since the coefficient of x2* in qp^x) must be zero, the constant of integration, c,,

is determined by c, + 2 — 2 log 2 = 0 when k = 0 and by

1 + ^0iog2+ 2(-iy(^2)^ = o

when k > 0. The value of the desired sum is <p,(l) = c,.

The remaining sum can be evaluated in a similar way by setting

<p2(*)=i(-iy("1/2)

j=0 \     J     I (2k - 2j)
j*k

We find

<p2(x) = c2 + log[ 1 + (1 - x2)l/2]   when k = 0 and

= c2x2k + (1 - x2),/2[fi2, + B2Jk_2x2 + • • • +B.X2*-2]

+ 50x2Mog[l +(l-x2)1/2]

when k > 0, where

^-(-.)-(-f)/(;V|).   ,•>,,
-(-!)*(-1/2),      y-0,1.

The final result of the calculations gives

Q(B) = Bl'2Px(B) log 8B + Bl/2QX(B),

QAB) =  2   lin.B-2'"
m = 0

where

9o = -2.       42m = (1/2/M - 2o2m_, - ajp^,   m > 0,

11 1
°t=l~2 + M + (2Ä: - 1)2A: '

(3.3)
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From these results, the first few terms of the series for PX(B) and QX(B) are easily

calculated.

1 15
»v   > 24 210 214 2M

1-2      47„,       1097   „ ,     329177 „ .
ß,(£) = -2 + — B~2 + —B-4 +*iv  / 24 2" 3 • 215

3-2 24

(3.4)

4. From (3.1), (3.3), and (3.4),

trQ(B)/P(B) = log 85 + QX(B)/PX(B)

= \ogiB-2--B-2-^B^
24 2n 3 . 2i3

79    D_6     23005
— .o    —

,24
B~* +

To obtain the maximum |62|, we put B = ip, p > 0. We must then find C satisfying

(2.3). Such a C is determined by

b.i-if-V* 1    -,     21     -
u      24 2"

If C = uC,( a) then one easily verifies

1    _2      1    ^ .

-27M--?TM- +

C,(u) = 1 + — u"2 - —u^ +,v nf 23 2 3 • 2
37     .— M    +

215

Putting this into (2.4) gives

¿ =[P(C)/P(B)]2 = -/C,(M)/>,(C,(u))2P,(/>r2

1      2       3 55 259
-u"° -I-u^° +3  . 210 r1 2,5  r1

Let /? = 1 — \A\ and invert the series to obtain

- l-'/'ß-"A,_ Ja+ _*,. + «?> +
4 3 • 25 27

and finally

62 = 2A(C- AB) = 2/(1 - ß)p(Cx(p) - 1 + ß)

- ö'/^Wl -|¿8 + -
3-2:

r_-^,.+...)

which is the result (1.3) to be proved.

5. The expansions of (3.4) are valid for any B with |5| > 1. Hence we could

duplicate the calculations of §4 with arbitrary B, \B\ > 1. The computational

difficulties are mainly in solving for C. However one can evaluate the first few

terms of the expansions for 6, and 62 without much difficulty.
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Set arg B = <f>. Then (2.5) gives

b, = 1 -
sin2<p     sin2 <f>(43 - 49 sin2 <j>)

¿>2 =

8|5|2

i sin 4>

256|5|4

2\B\

(17 - 25 sin2 á — 9i sin <f> cos d>)
1 +i-1-T-Ti +

32|B|2

Again setting /? = 1 — 6, and inverting one finds

b2 = i2"2ß"2 1 -
(9 + sin2 <p + 18/ sin </> cos <i>)

8 sin2 <i>
/8 + (5.1)

Unfortunately, this formula is only useful for large \B\. Thus (5.1) defines only a

small part of the boundary of the b2 coefficient region. In particular it is not valid

at what are called the "critical points" in [5].

Formula (5.1) is sufficient to show that the "tip" of the b2 region is approxi-

mately of quadratic (parabolic) character near b2 = i'y2/31/2 .
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