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REMARKS ON SOUSLIN PROPERTIES AND TREE TOPOLOGIES

WILLIAM G. FLEISSNER1

Abstract. We investigate the relation of Souslin (antichain) properties of trees and

tree topologies. One result extends a result of Devlin and Shelah by proving, within

ZFC, the equivalence of four properties for <o,-trees-collectionwise normal, normal

and collectionwise Hausdorff, property y, and antichain normal and collectionwise

Hausdorff. A second result is the construction, assuming V = L, of an Aronszajn

tree which is not countably metacompact. Third, we show that no tree can be a

Dowker space.

Certain topological properties of tree spaces can be characterized by Souslin (i.e.,

antichain) properties of the trees considered as partially ordered sets. An example

is the folklore result that the tree topology on an to,-tree is a Moore space iff the

tree is a special Aronszajn tree-i.e., the union of countably many antichains.

Devlin and Shelah [DS] obtained characterizations of those trees whose topologies

are (a) collectionwise Hausdorff, and (b) (assuming V = L) normal. This paper

continues this line of investigation.

Some properties, such as Moore and collectionwise Hausdorff, can be char-

acterized in ZFC-i.e., using only the usual axioms of set theory. Other properties

cannot. For example, assuming MA H—i CH, all Aronszajn trees are special and

their tree topologies are normal; while assuming V = L the tree topologies of all

special Aronszajn trees are not normal. Devlin and Shelah obtained a characteriza-

tion of normality assuming V = L. Although they did not mention it, within their

proof are characterizations in ZFC of some other topological properties. We will

discuss this in §2.

The topological properties mentioned above are closely related to the normal

Moore space problem. Also related to w,-trees is the Dowker space problem. In [R],

M. E. Rudin "tied together" countably many Souslin trees with the tree topology to

get a Dowker space. (We will show in §4 that one tree alone cannot be a Dowker

space.) It is worth mentioning that a simplification of the proof in that paper yields

that the tree topology of a Souslin tree is normal. The topological properties

associated with the Dowker space problem are normality, countable paracompact-

ness and countable metacompactness (the last is called property D in [R]). Counta-

ble paracompactness behaves similarly to normality with respect to characteriza-

tion. Assuming MA H—i CH, all Aronszajn trees are special and countably para-

compact, while assuming V = L all special Aronszajn trees are not countably

paracompact. Countable metacompactness is a much weaker property. It is not
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easy to find any example of a regular not countably metacompact space. Within

ZFC it can be proven that every special Aronszajn tree is countably metacompact.

It is tempting to conjecture that it can be proven within ZFC that every «,-tree is

countably metacompact. In §3 we refute this conjecture by assuming V = L,

specifically <>+, to construct an Aronszajn tree which is not countably metacom-

pact.

1. Notation and convention. An ordinal is the set of its predecessors. Cardinals

are identified with initial ordinals. The cardinality of a set X is denoted |A"|. A

subset C of to, is club (closed and unbounded) iff \C\ = «, and whenever D is a

countable subset of C, then sup DEC.

A tree 9" is a partially ordered set (T, <r) such that for every t E T, the set

í = {j e T: s < /} is well ordered by <r. The order type of (t, <r) is denoted

ht(r); {/ E T: ht(t) = a} is denoted by Ta. A branch of 9" is a maximal totally

ordered subset of T; a branch b is an a-branch if the order type of (b, < T) is a.

For C a set of ordinals, T - T \ C = [t E T: ht(t) £ C). An antichain of T is a

pairwise incomparable subset of 9".

?T is an ux-tree iff (i) {ht(f): t E T) = w„ (ii) for all a < «„ |TJ = w, (iii) for

every t E T and for every a, ht(t) < a < w,, t has at least two successors of height

a, and (iv) if ht(r) = ht(s) is a limit ordinal, t = s iff t = s. An Aronszajn tree is an

«,-tree with no «,-branch; a Souslin tree is an «,-tree with no uncountable

antichain.

Let 5" be an «,-tree. The tree topology on ?T has a basis of all sets of the

following forms:

[ /, s) = {u E T: t < u < s}    where t E T0, s E T,

(t, s) = { m E T: t < u < s}    where t ET, s ET.

When we say that "5" is normal, we mean the tree topology on it is normal (not

that Í is a normal a-tree as defined in [J, p. 218]). A topological space is

collectionwise Hausdorff iff every closed discrete collection of points can be simulta-

neously separated by disjoint open sets; a topological space is collectionwise normal

iff every closed discrete collection of closed sets can be simultaneously separated

by disjoint open sets.

An «,-tree 5" is said to have property y [DS] iff whenever A is an antichain of 5"

there is a club subset C of w, such that T — T \ C contains a closed neighborhood

of A. An «,-tree 9" is said to be almost Souslin iff whenever A is an antichain of 5"

then (ht(a): a E A} is not stationary. Clearly property y implies almost Souslin; it

is not hard to show (see [DS, Theorem 3.3]) that 9" is almost Souslin iff the tree

topology on 9" is collectionwise Hausdorff.

The tree topology on an w,-tree ?T is said to be antichain normal iff whenever H

and K are disjoint closed subsets of T then they can be separated by disjoint open

sets if at least one of H and K is an antichain.

A space is countably paracompact iff every countable open cover has a locally

finite refinement. A space is countably metacompact iff every countable open cover

has a point finite open refinement.
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2. Collectionwise normality and property y. In this section we prove within ZFC

that four properties of an «,-tree are equivalent. The hardest part-(d) —* (a)-is

essentially Theorem 4.1 of [DS], but we have strengthened the conclusion and used

topological ideas to clean up some details. We derive the characterization of

normal tree topologies assuming V = L as a corollary of Theorems 2.1 and 2.2.

(The key part of Theorem 4.2 of [DS] is to reprove a special case of Theorem 2.2.)

Theorem 2.1. The following are equivalent for an u>x-tree 9".

(a) The tree topology is collectionwise normal.

(b) The tree topology is normal and collectionwise Hausdorff.

(c) ?T has property y.

(d) The tree topology is antichain normal and collectionwise Hausdorff.

Theorem 2.2 [F]. Assuming V = L, every normal T2 space of character < Tf is

collectionwise Hausdorff. In particular, every normal wx-tree is collectionwise Haus-

dorff.

Corollary 2.3 [DS]. Assuming V = L, an ux-tree 5" has property y iff its tree

topology is normal.

Proof of Theorem 2.1. (a) -> (b) -» (d) is obvious.

(b) -» (c). Because 5" is collectionwise Hausdorff, if A is an antichain of ?F, then

A* = (ht(a): a E A) is not stationary. Let C be a club set disjoint from A*. Apply

normality to the disjoint closed sets A and {t E T: ht(t) EC).

(c)->(d). Let A be an antichain of ?T and H a closed set disjoint from A.

Because ?T has property y, A* = (ht(a): a E A) is not stationary, so let C be a

club set disjoint from A*. From property y we obtain disjoint open sets U, V

satisfying

U D A,        V D [t E T:ht(t) E C).

Next notice that T — T f C is an open metrizable subset, so we can find disjoint

open subsets U', V satisfying U' D A, V D H n (T - T \ C). Then U n U'

and V u V are disjoint open subsets separating A and //.

(d)-»(a). Let % = { Y¡: i E I) be a discrete family of closed sets. We define

antichains An, n E w, by induction on n. Let A0 be the set of < 7-minimal elements

of U ^ . For a E An, let

T(a)= {t ET:a <Tt),

and let i(a) E I be such that a E y/(a). Let B(a) be the set of F-minimal elements

of F(a)n(U^ - y,(fl)).Set

An+l= U {B(a):aEAn}.

Note that for every t E T, t r\ (UneuAn) is finite. For if it were infinite, it

would have a limit point. That limit point would contradict the assumption that ^

is discrete.

For a E An, set

X(a) = 7<a) -  U {^6): b E B(a)}.
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By the previous paragraph

9C = [X(a):a E An, n E u} \J {{t E T:tnAo = 0}}

is a partition of T into closed and open subsets. So it is sufficient to separate

%\X - {Y, n X: i G 7} for each X E %. Let X E % be AYa) (the other case is

simpler). Use antichain normal to separate Y,(a) n X from B(a). Then use collec-

tionwise Hausdorff to separate the points of the closed discrete set B(a).

3. Countable metacompactness and 0+. In this section we use 0+, a consequence

of V = L, to construct an Aronszajn tree which is not countably metacompact.

Our goal is to define a tree 9 with antichain A and partition A into [An, n E «}.

To show 9" is not countably metacompact we will set Un = (T - A) u An. Clearly

% = [Un: n E «} is a countable open cover of 5". Suppose there were a point-

finite open refinement "31 of %. Define, for r E R, n(R) to be the least n such that

R C Un. Define for / E Tfit) = sup{«(Ä): / E R E &}. Then/would satisfy

(i)/:T^«,
(ii) if a E An, then fia) = n,

(iii) for all / E T - T0 there iss E t such that for all t/ G (s, t), fiu) > fit).

We will use 0 + in constructing 9", A so that no such / exists. The key idea in

preventing such / is the following observation, whose routine proof is omitted.

Lemma 3.1. Let b be an ux-branch of 9, and f: b -»«. Let n be the least natural

number such that /""{«} is uncountable. Set Cb = {y G «,: f~{n} n y is cofinal in

y, y > sup/^O, 1, . . . , n — 1}}. Then Cb is a club set.

Our plan is inductively define <a = <T n (U^^ Tß X U ß<a Tß). At each

stage, 0 + will give us countably many / f a's to look at. If / ï a already does not

satisfy (ii), (iii) above, there is nothing that needs to be done. If / { a satisfies (ii)

and (iii) but we can prevent any extension of / [ a satisfying (ii), (iii), we do so.

Otherwise we continue growing a branch associated with/ { a. Lemma 3.1 applied

to the branch associated with the initial segments of a function/: T —»« guarantees

that at some stage we can prevent/from satisfying (ii) and (iii).

The construction sketched above requires 0+ and not merely 0 because in the

otherwise case we need to be sure that the branch associated with f \ a has been

continued up to level a. We proceed to the technical details.

0+ is the assertion that there is a sequence { Wa: a < «,} satisfying

(a) for each a < «,, Wa is a countable family of subsets of a,

(b) for each X c «,, there is a set Cx club in «, such that for all y G Cx,

X n y G Wy and Cx n y G Wy.

We will add the harmless additional condition

(c) Wa =?= 0 implies a is a limit ordinal.

We will find it useful to collect pairs of elements of W which might be X n y and

Cx n y. For a < «, let Za be the set of pairs (x, c) satisfying

(d)xe wa,cE wa,

(e) c is club in a,

(f) for all y G c, x n y G Wy and c n y G Wy.
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We will use the W sequence to consider branches through the tree, and functions

from the tree to w. Such objects are not subsets of to,, but they can be coded as

subsets of <o,. To accomplish this coding, let 9 be a bijection from to, to to, X to X to

such that for each limit ordinal A < «,, 9 [ X is a bijection from X to X X to X u.

Let p be a similar bijection from w, to co, X w.

We will define <", A" (for all n E to), and B" by induction on a < to,. The idea

is that we will set < = U „<„, <", A„ = U „<„, Af and B = IJ 0<u, B». Then

9" = ((ux X u), <) will be a tree, A = \J n(Eu An an antichain of 5", and B will be

a function from (codes of) initial segments of functions / from T to u. B associates

a branch with functions/which might satisfy (ii) and (iii).

For notational convenience, we have made the elements of A maximal in *3\ We

will later "graft" an Aronszajn tree above each element of A to make an to,-tree.

The branch associated with/is the set of all predecessors of elements of the form

B(((9<^f) n y, Cg-f n y)), where defined. Hypothesis 9 insures that that set is

indeed a branch and that different branches are associated with different functions.

Hypothesis 11, when applicable, prevents / from satisfying (i), (ii), (iii). After

Hypothesis 11 is applied, Hypothesis 10(c) says that we no longer continue to grow

the branch associated with/

We now define <", A" (for /j G to) and B" by induction on a < to, to satisfy the

following hypotheses.

1. For all ß < a and n E w, < ß c <", A? c A?, and Bß c Ba.

2. 3° = ((a X co), <") is a tree of height a.

3. For all (ß,n)EaXu, ht((/?, n)) = ß.

4. {A": « G to) is a disjoint family and A " = U n6w A " is an antichain of 9"°.

5. If t E A ° then Ms a maximal element of 9a.

6. If t E T" - Aa, then for all ß, ht(t) < ß < a, there are distinct s, s' E Tg

such that t <"s' and t <as, (t, s'] n range B" = 0 = (/, s'] n range B".

7. a G A " implies that a E range Ba and that ht(a) is a limit ordinal.

8. Ba is a function, dorn ß"cU ß<a Zß and (x, c) G Zß n dorn B implies

ht(Ba((x, c))) = ß.

9. If (x, c) G dom Ba and (y, d) G dorn Ba then Ba((y, d)) <aBaBa((x, c)) iff

there is y G c such that (y, d) = (x n y, c n y).

10. For all ß < a and (x, c) G Z^, (x, c) G dorn 5 a iff

(a) 9 ~"x is a function from 7^ to to.

(b)a E A? implies 9^x(a) = n.

(c) For all t E Tß - T¡f there is í <a / such that for all u E (s, t], 9^x(u) >

9-*x(t).

11. If (x, c) G dom Ba, then t = Ba((x, c)) E A" if n is the least natural number

such that (9~*x)~*{n} is cofinal in /.

12. For all ß < a and y E Wß if p~*y is a /?-branch of 7^ and range Bß is not

cofinal in p~*y, then there is no / G Tß such that p~y + r.

The above induction can be easily carried out. Set < ° = A ° (for all n E u) = B°

= 0. If X is a limit ordinal set <x = U a<x <a, Bx = (J a<x 5a, and for all

«Gto,^= U a<xA¿.



SOUSLIN PROPERTIES 325

If a = 8 + 1, where 8 = v + 1, define <" so that every element of Tf — Ar has

two immediate successors in Tg.

Finally, suppose a = X + 1 where X is a limit ordinal. Assign the elements of T"

in the following order. First, define B" to satisfy Hypotheses 1, 9, 10. It is

Hypothesis 9 which requires 0+ rather than 0. We must define Bx((x, c)) for

certain (x, c) E Zx. Because c is closed in X there are three possibilities: c is empty,

c has a last element, or c is cofinal in X. In each of these cases, there is no problem

in defining Bx((x, c)) to satisfy Hypothesis 9. The point is that the case c has no

last element and c is not cofinal in X does not occur. Second, define A" (for n E «)

to satisfy Hypotheses 1, 7, 11. Third, assign elements to satisfy Hypotheses 6, 12.

Everything can be done in one step except satisfying Hypothesis 6. Given t E Tß

— Ax, we must extend / u {t} to be a X-branch with elements above t not in range

B" and the A-branch not p(y) for some v G Wx. There are countably many things

to avoid, and the confinality of X is «, so we avoid the countably many things to be

avoided one by one, using the induction hypothesis that Hypothesis 6 is satisfied

for A.

We finish defining the example by grafting an Aronszajn tree above each

element of A.

Having defined 5", we must verify that it is not countably metacompact. Aiming

for a contradiction, we suppose not. We argue as at the beginning of this section,

using A = U „6u An to define a countable open cover, and using the hypothesized

refinement to get a function / satisfying (i), (ii) and (iii). Because 9 is a bijection, /

will be 9^X for some X c «,. From 0+ we get a club set C such that y G C

implies that (X tl y, C n y) E Zy. Because / satisfies (i), (ii) and (iii), induction

Hypothesis 10 yields that for all y G C, (X n y, C n y) G dom B. Then induction

Hypotheses 8, 9 yields that b = [t E T: (3y G C)(t < B(x n y, C n y))} is an

«,-branch. We apply Lemma 3.1 to get another club set Cb. Let y G C n Cb. Since

y G Cb, there is (a least) n G « such that [a < y: fibj) < «} is cofinal in y.

Because y G C, (x n y, c n y) E dom B and by induction Hypothesis 11, by G

An+X. Since/satisfies (ii),/(èT) = n + 1. Since/satisfies (iii) [a < y: f(ba) < n} is

not cofinal in y. Contradiction.

A similar but simpler "usual 0 argument" using induction Hypothesis 12, shows

that there is no «,-branch through 9". The attentive reader will note that if we

continue each branch associated with a function to an «,-branch (e.g., we delete

Hypotheses 5, 10(c), 12 and replace "t E Ta - Aa" with "t E Ta") the above

construction yields a not countably metacompact «,-tree with 2U> «,-branches.

4. There are no Dowker trees. Peter Nyikos has modified an idea of a preliminary

draft of this paper to give the following result. He has graciously suggested that it

be included in this paper.

Theorem 4.1. If a tree 9 is either antichain normal or collectionwise Hausdorff,

then 9 is countably metacompact.

Corollary 4.2. There are no Dowker trees.
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Proof of Theorem 4.1. Let % = {Un: n G to) be a countable open cover of the

tree T. For each « G to, define

V„=\tET:{t}ut'ç U   Um).
t m<n I

Then U n<a Vn = T, Vn c U m<n U„, and (closure V„) - Vn is an antichain.

Define W0 = V0, lVn+x = Vn+X- (closure V„). Then <3|T = [Um n Wn: m < n <

co) is point-finite, open, refines %, and covers all of T except the closed discrete

subset Y = U „<u((closure Vn) - Vn). Set A„ = Y n (Un - U m<„i/m); by either

antichain normal or collectionwise Hausdorff, there is a disjoint open family

S = {G„: n G to) such that for each n E u, A„ c G„ c i/„. Then *u§ is a

point finite open refinement of 6ll.

4.3. Question. Suppose the tree topology on 5" is such that every closed subset of

F is Gs. Must T be the union of countably many antichains? Equivalently, does

perfect imply Moore for tree spaces?
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