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THE HAHN DECOMPOSITION THEOREM

raouf doss

Abstract. Let (X, &, ¡i)be a. signed measure on the o-algebra 6? of subsets of X.

We give a very short proof of the Hahn decomposition theorem, namely, that X

can be partitioned into two subsets P and N such that P is positive: pj(E) > 0 for

every E c P, and N is negative: jti(li) < 0 for every E c. N.

A signed measure p on the measurable space (X, fi) is an extended real valued

set function defined on the sets of the a-algebra & and satisfying

(i)u(0) = O.
(ii) p assumes, at most, one of the values +00, — 00.

(iii) u( U En) = 2 p(Ej) f°T anv sequence of disjoint measurable sets En.

Condition (iii) yields immediately the following:

(iii') If An \ and p(Aj) =7= ±00, then hm p(Aj) = p(f\Aj).

In what follows we shall suppose that

(ii') + 00 is the infinite value omitted by p.

We say that a set P E â is positive (with respect to the signed measure p) if

p(E) > 0 for every measurable E c P. Similarly, N is negative if p(E) < 0 for

every E c N.

Lemma. Every A E & with p(A) ^ — 00 contains a positive set P such that

p(P) > p(A).

Proof. We first show that to every e > 0 there corresponds Ae c A such that

p(Aj) > p(A) and B c Ae => p(B) > — e. For otherwise, inductively, there is a

sequence Bx c A, . . ., Bk c A\(BX u • • • U Bk_x), . . . such that p(Bk) < - e.

Put B = U Bk. Since the Bk are disjoint, then p(B) = - 00, p(A\B) = p(A) -

p(B) = + 00, against (ii'). Now choosing er -» 0, A \ and putting P = D A we

see that P is positive and by (iii') p(P) > p(A).

The Hahn Decomposition Theorem. Let p be a signed measure on the measura-

ble space (X, &). Then X can be partitioned into a positive set P and a negative set

N.

Proof. Let s = sup{ p(A): A E &}. There is a sequence Pn such that p(Pj)-* s

and, by the lemma, we may assume the Pn are positive. Putting P = U P„ we have

p(P) = ¿ and P is positive. But JV = X\P is negative, for if E c N and p(E) > 0

then p(P u E) > s which is impossible.

The proof is now complete.
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