THE HAHN DECOMPOSITION THEOREM

RAOUF DOSS

ABSTRACT. Let (X, \mathcal{C}, μ) be a signed measure on the σ -algebra \mathcal{C} of subsets of X. We give a very short proof of the Hahn decomposition theorem, namely, that X can be partitioned into two subsets P and N such that P is positive: $\mu(E) > 0$ for every $E \subset P$, and N is negative: $\mu(E) < 0$ for every $E \subset N$.

A signed measure μ on the measurable space (X, \mathcal{R}) is an extended real valued set function defined on the sets of the σ -algebra \mathcal{R} and satisfying

(i) $\mu(\emptyset) = 0$.

(ii) μ assumes, at most, one of the values $+\infty$, $-\infty$.

(iii) $\mu(\bigcup E_n) = \sum \mu(E_n)$ for any sequence of disjoint measurable sets E_n . Condition (iii) yields immediately the following:

(iii') If $A_n \searrow$ and $\mu(A_1) \neq \pm \infty$, then $\lim \mu(A_n) = \mu(\bigcap A_n)$.

In what follows we shall suppose that

(ii') $+\infty$ is the infinite value omitted by μ .

We say that a set $P \in \mathcal{A}$ is *positive* (with respect to the signed measure μ) if $\mu(E) > 0$ for every measurable $E \subset P$. Similarly, N is *negative* if $\mu(E) < 0$ for every $E \subset N$.

LEMMA. Every $A \in \mathcal{R}$ with $\mu(A) \neq -\infty$ contains a positive set P such that $\mu(P) \ge \mu(A)$.

PROOF. We first show that to every $\varepsilon > 0$ there corresponds $A_{\varepsilon} \subset A$ such that $\mu(A_{\varepsilon}) > \mu(A)$ and $B \subset A_{\varepsilon} \Rightarrow \mu(B) > -\varepsilon$. For otherwise, inductively, there is a sequence $B_1 \subset A, \ldots, B_k \subset A \setminus (B_1 \cup \cdots \cup B_{k-1}), \ldots$ such that $\mu(B_k) < -\varepsilon$. Put $B = \bigcup B_k$. Since the B_k are disjoint, then $\mu(B) = -\infty, \mu(A \setminus B) = \mu(A) - \mu(B) = +\infty$, against (ii'). Now choosing $\varepsilon_r \to 0$, $A_{\varepsilon_n} \to 0$ and putting $P = \bigcap A_{\varepsilon_n}$ we see that P is positive and by (iii') $\mu(P) > \mu(A)$.

THE HAHN DECOMPOSITION THEOREM. Let μ be a signed measure on the measurable space (X, \mathcal{C}) . Then X can be partitioned into a positive set P and a negative set N.

PROOF. Let $s = \sup\{\mu(A): A \in \mathcal{C}\}$. There is a sequence P_n such that $\mu(P_n) \to s$ and, by the lemma, we may assume the P_n are positive. Putting $P = \bigcup P_n$ we have $\mu(P) = s$ and P is positive. But $N = X \setminus P$ is negative, for if $E \subset N$ and $\mu(E) > 0$ then $\mu(P \cup E) > s$ which is impossible.

The proof is now complete.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11794

© 1980 American Mathematical Society 0002-9939/80/0000-0536/\$01.25

Received by the editors February 14, 1979.

AMS (MOS) subject classifications (1970). Primary 28A10.