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ON A QUESTION CONCERNING COUNTABLY GENERATED

z-IDEALS OF C(X)

ATTTLIO LE DONNE

Abstract. In [D,] the following question was asked: is every countably generated

z-ideal of C(X) of the form Oa » D peA Op, for some zero-set A of ßXt It is

proved here that the answer is affirmative when X is normal and first countable;

and an example is given, disproving the general conjecture. For terminology and

notation see [GJ], [D,].

1. Countably generated z-ideals.

1.1. First of all, we observe that the question asked in [D,] may be reformulated

in a purely algebraic way: that is, it involves C(X) only, and not the underlying

space X, which need not even be assumed completely regular.

Their usual definition notwithstanding, z-ideals are purely algebraic objects: see

[GJ, 4A.5]. And ideals of the form 0A = C\ peA Op, with A being a closed subset

of ßX, may also be defined algebraically, with no reference to X or ßX: it is proved

in [Br], in [Bk] or in [D2] that such ideals are exactly the pure ideals of C(X) (we

recall that an ideal / of a commutative ring R (with 1) is said to be pure if for every

f £ I there exists g G / such that/ = fg). In [D,, Lemma 2.1], it is proved that 0A

(with A closed in ßX) is countably generated if and only if A is a zero-set of ßX.

Thus the question under investigation may be restated:

Is every countably generatedz-ideal of C(X) apure ideal"!

1.2. As customary, given a subset {/,} of C(X), (fa) denotes the ideal generated

by that subset; in particular, if g G C(X), then (g) denotes the principal ideal

generated by g.

Uf, g £ C(X) and Z(f) is a neighborhood of Z(g) in C(X) then/is a multiple

of g in C(X) [GJ, 1.0]. Hence, with co = the natural numbers, we have the

following:

Lemma. Let (f„)nSu be a sequence in C(X) such that intx(Z(fn)) D Z(fn+X), for

every n £ co. Then I = (/„, /,, f2, . . . ) is a z-ideal.

1.3 Lemma. Let I be an ideal of C(X). Then

(i) / is pure if and only if for each f £ I there exists g £ I such that X \ Z(f) and

Z( g) are completely separated in X.

(ii) // X is normal, then I is pure if and only if for every f £ I there exists g £ I

such that int* Z(f) D Z(g),
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Proof, (i) By definition of purity (cf. 1.1) / is pure if and only if given f E I

there exists g G / such that / = fg. If / is pure, then 1 - g completely separates

X \ Z(f) and Z(g); conversely, if /, g G /, and v E C(X) is 1 on X \ Z(f) and 0

on a neighborhood of Z(g), then/ = fv, and v E I, being a multiple of g. Thus / is

pure.

(ii) follows obviously from (i) since, in normal spaces, two subsets are completely

separated iff they have disjoint closures.

1.4 Lemma. Every countably generated semiprime ideal I of C(X) is generated by a

sequence g0, g„ g2, ■ ■ ■ such that

(go) c(g,)c(g2) C • • • .

Proof. If / - (/„,/„/2,. .. ), put g„ = 2?_0|/|,/2 (cf. [D„ 3]).

When X is first countable, there is a converse to Lemma 1.2:

1.5 Lemma. Assume X is first countable. Then every countably generated z-ideal I

of C(X) has a sequence of generators /„, /,, f2, . . . such that int* Z(/„) D Z(fn+X),

for every n E N.

Proof. Being a z-ideal, / is semiprime, hence it has a sequence of generators g„,

g„ g2, . . . with (go) C (g,) C (&) C ■ ■ • by Lemma 1.4. We prove that g^ g„

g2,. . . admits a subsequence with the required property. Put n(0) = 0. If

intj- Z(g0) fails to contain any Z(g„), then for each n there exists p„ G cl* coz(g0)

n Z(g„) and a sequence (x£)m in coz(g0), which converges top„ as m -» oo. For

each n, the set Sn = cl^ Z(g0) u {x^: m E N} is then a closed subset of ßX; the

function which is zero on cl^ Z(g0) and |g„(x^)|1/2 on {x£: m G N} is clearly

continuous on S„; hence it has a continuous extension h* G C(ßX). Let hn =

h*\X. Put h = 2"_o(A„ A 2"); by uniform convergence, n G C(X). Clearly Z(h)

D Z(g0); but n cannot be a multiple (in C(A")) of any gn. For if h = ugk, then

u8k > K A2~*; if m is sufficiently large, we have hk(x*) A 2"* = |g*(x*)|1/2,

hence |«(x*)| > 2~k\gk(x£)\~x/2; letting m -» oo, we see that ti cannot be continu-

ous atp¿. This contradiction shows that there exists n(l) G N such that int^ Z(g¿)

Z) Z(gn(1)). An obvious induction yields the desired subsequence.

1.6 Proposition. If X is normal and first countable, then every countably generated

z-ideal of C(X) is pure. Hence, in such spaces, countably generated z-ideals are the

ideals 0A, with A running on the zero-sets of ßX.

Proof. By Lemmas 1.5 and 1.3(H).

2. The example. In this section we describe a space X and a countably generated

z-ideal / of C(X) that is not pure. (What we construct is a space X and a sequence

(Z„)„e<_ of zero-sets of X such that int^ Z„ d Zn+1, but X \ Z0 and Z„ are not

completely separated, for every n E u; this disproves the conjecture in question

(Lemma 3(a) and Lemma 2, §1).)

The space is obtained by attaching together, in a certain way, infinitely many

copies of Tychonoff planks; u = w0 and co, are the cardinals H0, Rx, respectively,
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considered as initial ordinals, with their order topology. Consider the (complete)

Tychonoff planks T* = (co, + 1) X (co + 1); let S* denote the space obtained from

T* by identifying all points of the "top edge" (co, + 1) X {co} to a point c. It is

straightforward to see that S* is a compact Hausdorff space with clopen basis.

(One can picture it as a set of "rays" centered at c, each ray being a copy of co + 1,

with c as limit point.) The (complete) book is the space B* = S* X (co, + 1), with

product topology. Clearly, B* is a compact Hausdorff space with clopen basis. The

subspace W* = {c} X (co, + 1) is a copy of co, + 1; it is called the back of B*.

Points of B* \ W* are triples (a, m, ß) with a, ß G ux + 1, m G co; a, m, ß may be

thought of as "cylindrical coordinates" a being the angle, m the radius, ß the

height; but it is more fitting to think of a as the page in which the point lies, and m,

ß as the column and the line, respectively at which one finds the point on the ath

page. Thus, the book has N, pages, each page has co = K0 columns and N, lines.

For a better understanding of the arguments which follow it is useful to keep this

picture in mind. The top section of B* is the subspace S* X {co,}; for each m £ co

we have the mth top column Cm = {(a, m, <t>x): a £ co, + 1} it is a copy of to, + 1.

The vertex of B* is the point v = (c, co,) ( G W*). The top edge E of B* is the

subspace {(co„ m, co,): m £ co} u {«}; it is a copy of co + 1. The incomplete book B

is the subspace B* \ E.

We need some facts on B, B*.

2.1 Lemma, (i) W* is a zero-set of B*.

(ii) B is an open dense C-embedded subspace of B*. (Hence, B is pseudocompact,

and B* = ßB.)

Proof, (i) Define ¿>: B* -* R to be 0 on W*, and put <b(a, m, ß) = 2~m for every

(a, m, ß) £ B* \ W*. It is easy to see that <f> is continuous. The proof of (ii) is

deferred until §3.   □

Consider now the space A* = (co X co) X B*, with product topology. Since

co X co is discrete, A* is simply a topological sum of H0 disjoint copies of B*, it is

locally compact and a-compact (hence realcompact) but not compact. It is called

the (complete) library; its subspace A = (co X co) X B, the incomplete library, is

open dense and C-embedded in A* (Lemma 2.1(h)); then A* is the realcompactifi-

cation of A. Given r £ co, the subspace 2* = ({/•} X co) X B* is called the (com-

plete) rth shelf of A*; and ({r} X {s}) X B* is the sth book of the rth shelf (the

meaning of 2r, incomplete rth shelf, should be obvious). We now "attach" to each

other the books of A* in a certain way; we shall obtain a quotient X* of A*, which

will have the image A' of A as dense and C-embedded subspace; the space X will

yield our example. Fix a bijection u: co -» to X co, u(s) = (sx, s^. Define a (noncon-

tinuous) map ¡i: A* —» A* piecewise, as follows: points of A* which do not belong

to the back of any book are left fixed; if p lies in the back of the ith book of the rth

shelf, say p = ((r, s), (c, ß)), ß G co, + 1, then define u(p) = ((r + 1, sx),

(ß, s2, co,)). In other words, /t "attaches" the back of the sth book of the rth shelf

(this back is a copy of co, + 1) to the s2th top column of the j,th book of the

(r + l)st shelf. (This column is a copy of co, + 1, too.) The equivalence relation
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identifies x and p(x), for every x G A*; since p is idempotent (i.e. p ° p = p, as is

easy to see) each equivalence class contains at most two points (exactly one if the

point does not he on the back or on the "top section" S* X {<o,} of any book); this

implies that the quotient is a r,-space (but we do not need, at this point, any

separation property for the quotient; in §3 it shall be proved that the quotient is a

T4 zero-dimensional space).

Let X* be the quotient, q: A* -» X* the quotient map. It is easy to verify that

^*~(^(A)) = A (vertices of books are mapped by p into points of top edges); since

A is open (and dense) in A*, this implies that X — q(A) is open (and dense) in X*,

moreover the quotient topology of X (via the map q\A) coincides with the subspace

topology.

By well-known properties of quotients, / G C(A*) may be factored as g ° q, with

g G C(A"*) if and only if / is constant on the equivalence classes of q; this may be

restated as / ° p = / The same holds true for A and X, of course. We claim that

2.2 Lemma. X is dense and is C-embedded in X*. Hence C(X) and C(X*) are

isomorphic.

Proof. Given g G C(A"), consider h = g ° (q\A) E C(A). As observed before, A

is dense and C-embedded in A*; let h* denote the continuous extension of h on

A*. Since h ° ¡i = h, also n* ° p = h* (given a vertex of some book in 2?, p maps

it into some point of the top edge of some book of 2*+1, n must eventually assume

the same value on tails of the back of the book in the rth shelf and in the top

column of the book of the (r + l)st shelf to which p attaches this back). Hence h*

factors as g* ° q, with g* E C(X*) being the required extension of g.

We now define a sequence (f„)„eu of functions of C(A*), compatible with the

equivalence relation; the sequence (g*)„Su of C(X*) (where g* ° q = f„ for each

n G «) will be shown to generate a z-ideal of C(X*) which is not pure. Define/, to

be identically zero on Ur>„+i 2*. This forces us to put/, identically zero on all

the backs of books of 2*; we define/, on the other points of books of the nth shelf

by means of the function <p used in the proof of Lemma l(i) of this section. On the

/nth top columns of books in the nth shelf, /„ has then constant value 2_m; use this

constant value to define /„ on books of the (n — l)st shelf attached to these

columns. Repeating this last procedure, it is easy to define /„ (piecewise constant)

on all books of all shelves of lower degree. It is clear that fn is ^-compatible, i.e.

/„ - «? ° I with g* G C(A"*). Put g„ - gn*|A".

Denote by / the ideal generated by (g„)nSu in C(A"), by /* the (isomorphic) ideal

in the (isomorphic) ring C(A"*).

2.3 Lemma, (i) / is a z-ideal of C(X).

(ii) /* is not pure in C(X*).

Proof (i) We prove that int* Zx(g„) D Z(gn+X), for every n G to [cf. Lemma

1.3]. In fact q^(Zx(gn+x)) Ç A Ç q^(Zx(gn)) where A is Ur>n+1 2r without the

point of the "top sections" of the books of 2n+i, i.e. A =(Ur>n+i2r)\ q*~q 2„.

Since A is an open subset of A and is A = q*~q(A), the required result follows.
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(ii) We prove that A = X* \ Zx.(g¡) and Zx,(g*) are not completely separated,

for any « G co. In fact, the closure of A mX* meets Zx,( g*), as we now show. Take

any vertex of any book of the rth shelf, for any r > n, say ((r, s), v). Then

p = q((r, s), v) £ Zx,(g*); and any open neighbourhood V* of p in X* meets A.

For, q*~(V*) is an open neighbourhood of ((r, s), u) in A*; then q*~(V*) contains

infinitely many top columns of the ith book of the rth shelf; by equivalence,

9*~(y*) contains also the backs of infinitely many books of the (r — l)st shelf; it is

then a neighbourhood of infinitely many vertices of books in this shelf, repeating

the procedure, we see that q*~( V*) is a neighbourhood of infinitely many vertices of

books of 2q; thus q*~(V*) n CozA.(/0) # 0; hence V* meets A = £7(CozA.(/n)).

3. In this section we give a proof of (ii) of Lemma 2.1 which asserts that B is

C-embedded in B*.

We shall also prove that X and X* are Hausdorff spaces with clopen basis.

Proof. Let / G C(B). We first prove that / extends to a continuous function

(which we still call /) on B* \ {v}. Observe that for every m £ co the subspace

C* = {(a, m, ß): a, ß £ co,} is clopen in B* and is homeomorphic to the space

ß* = (co, + 1) X (co, + 1) of [GJ, 8L]. From the same reference, we know that

ß = ß* \ {(co„ co,)} is C-embedded in ß*. Clearly Cm = C* n B is a copy of ß.

Given / G C(B* \ {v}), observe that / is eventually constant on the back, i.e.

there exists ß £ ux such that/(c, ß) = fie, ß) for all ß £ ux, ß > ß. For simplic-

ity, assume this eventual value to be 0; and put/(u) = 0. The extension so obtained

is continuous: otherwise, there exist e > 0 and a sequence pn = (an, mn, /?„), with

ßn > ß, ß„ G co„ an G co, + 1, and mn G co, lim^^ m„ = oo, such that \f(p„)\ > e.

In the compact space B*, (p„)„ has cluster points; since mn -» oo as n -» co, such a

cluster point belongs to the back W*\ and since ß < sup„ ß„ < ux, such a cluster

point is necessarily some (c, /?'), with ß < ß' < co,. Then/(c, /?') = 0; but continu-

ity of/at (c, ß') implies \f(c, ß')\ > e, a contradiction. This ends the proof.

Given a complete book B*, and a point (ä, m, ß) £ B* \ W* a neighbourhood

base for it in B* consists of "rectangles"

(1) K,ß = {(£> mj V) e B*: a < ¿ < ä, ß < r) < ß} with a < cî, ß < ß.

For a point (c, ß) G W* a neighbourhood base is

(2) Vmyß = {(c,7j): ß < Tj < £} U {(I, n, r,): £ G co, + 1, n > m; ß < n < £}

with m G co, ß < ß.

Next, a neighbourhood base for the back W* of B* consists of the sets

(3) Vm = W* u {(a, n, ß): a,ß£ux+l,n> m}, with m G co.

All these sets are obviously clopen in B*.

3.1 Proposition. A'* has a clopen basis.

Proof. Take a point/? G A*,/» belongs to some book of, say, the nth shelf "2*. If

p is neither in the back, nor in the top section (see §2) of the book, then there exists

a neighbourhood Vaß oip in the book (type 1) such that the equivalence relation is

the identity on Vaß. Then q^(q(Vaß)) = Vaß, and q(p) has a clopen neighbour-

hood basis in X*. Assume now that/» = \i(p'), with/»' in the back of some book in

2*_i- Take for/)' a clopen neighbourhood Vx of type 2, V^ß,; Lake for/», in its
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book a neighbourhood V0 (type 1) Vß, ß. Assuming that p' is not the vertex of its

book, we have V0 u Vx = q"q(V0 u Vx), so that q(p) has a clopen neighbourhood

basis in A"*. Finally assume p = n(p'), withp' = v, vertex of some book in 2J_(.

Then the books of 2¡¡_! are either disjoint from \l*~(Vx), or, otherwise, their back is

contained in ¡i^( Vx). Choose a clopen neighbourhood of these backs of type 3, and

consider their union V2. Repeating this procedure with V2 in place of Vx, and so on

inductively, we obtain a clopen subset of A invariant under p and p*~; and the

proof is complete.

3.2 Proposition. X* is a o-compact Hausdorff space with clopen basis. Moreover,

X* is the realcompactification of X.

Proof. As was observed in §2, A"* is a T,-space. Since A* is a-compact, so is X*.

The remaining assertions follow easily.

Observation. It is not difficult to show that X is locally compact (but not

a-compact, being not even realcompact). And A"* is a-compact, but not locally

compact.

Added in proof. The conjecture is true also for locally compact normal spaces.

The proof, quite similar to the first countable case, will appear in a forthcoming

paper.
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