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ON A QUESTION CONCERNING COUNTABLY GENERATED
z-IDEALS OF C(X)

ATTILIO LE DONNE

ABSTRACT. In [D,] the following question was asked: is every countably generated
z-ideal of C(X) of the form 04 = (1 ,c, O, for some zero-set A of BX? It is
proved here that the answer is affirmative when X is normal and first countable;
and an example is given, disproving the general conjecture. For terminology and
notation see [GJ], [D,].

1. Countably generated z-ideals.

1.1. First of all, we observe that the question asked in [D,] may be reformulated
in a purely algebraic way: that is, it involves C(X) only, and not the underlying
space X, which need not even be assumed completely regular.

Their usual definition notwithstanding, z-ideals are purely algebraic objects: see
[GJ, 4A.5]). And ideals of the form 04 = N ., OF, with A being a closed subset
of X, may also be defined algebraically, with no reference to X or BX: it is proved
in [Br], in [BK] or in [D,] that such ideals are exactly the pure ideals of C(X) (we
recall that an ideal 7 of a commutative ring R (with 1) is said to be pure if for every
f € I there exists g € I such that f = fg). In [D,, Lemma 2.1}, it is proved that 0“4
(with A4 closed in BX) is countably generated if and only if 4 is a zero-set of BX.

Thus the question under investigation may be restated:

Is every countably generated z-ideal of C(X) a pure ideal?

1.2. As customary, given a subset { f,} of C(X), (f,) denotes the ideal generated
by that subset; in particular, if g € C(X), then (g) denotes the principal ideal
generated by g.

If f, g € C(X) and Z(f) is a neighborhood of Z(g) in C(X) then f is a multiple
of g in C(X) [GJ, 1.0]. Hence, with w = the natural numbers, we have the
following:

LEMMA. Let (f,),c., be a sequence in C(X) such that inty(Z(f,)) 2 Z(f,, ), for
every n € w. Then I = (fy, f1, f5, . . . ) is a z-ideal.

1.3 LEMMA. Let I be an ideal of C(X). Then

(i) 1 is pure if and only if for each f € I there exists g € I such that X \ Z(f) and
Z( g) are completely separated in X.

(i) If X is normal, then I is pure if and only if for every f € I there exists g € I
such that inty Z(f) D Z(g),
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PRrOOF. (i) By definition of purity (cf. 1.1) I is pure if and only if given f € I
there exists g € I such that f = fg. If I is pure, then 1 — g completely separates
X \ Z(f) and Z(g); conversely, if f, g € I, and v € C(X) is 1 on X \ Z(f) and 0
on a neighborhood of Z(g), then f = fv, and v € I, being a multiple of g. Thus 7 is
pure.

(ii) follows obviously from (i) since, in normal spaces, two subsets are completely
separated iff they have disjoint closures.

1.4 LEMMA. Every countably generated semiprime ideal I of C(X) is generated by a
sequence 8y, £y, 8, - - - such that

(g)c(g)c(g)c --.

PrOOF. If I = (fy, fy, fp, - - - ), put g, = 1ol 1" (cf. [Dy, 3D
When X is first countable, there is a converse to Lemma 1.2:

1.5 LEMMA. Assume X is first countable. Then every countably generated z-ideal I
of C(X) has a sequence of generators fy, f,, fy, . . . such that inty Z(f,) D Z(f,+1),
for every n € N.

PrROOF. Being a z-ideal, I is semiprime, hence it has a sequence of generators g,
81> 8 - - - With (8)) C(g) C(g) C--- by Lemma 1.4. We prove that g, g;,
g ... admits a subsequence with the required property. Put n(0) =0. If
int, Z(g,) fails to contain any Z(g,), then for each n there exists p, € cly coz(go)
N Z(g,) and a sequence (x,1),, in coz(g,), which converges to p, as m — oo. For
each n, the set S, = clgy Z(8) U {x,: m € N} is then a closed subset of BX; the
function which is zero on clgy Z(go) and |g,(x2)|'/? on {x,: m € N} is clearly
continuous on S,; hence it has a continuous extension h¥ € C(BX). Let h, =
h*|X. Put h = Z%_y(h, A 27™); by uniform convergence, h € C(X). Clearly Z(h)
D Z(gy); but h cannot be a multiple (in C(X)) of any g,. For if A = ug,, then
ug, > h, N\ 2% if m is sufficiently large, we have h(x}) A27* = |g(x5)|'/?
hence |u(xX)| > 27%| g,(xX)|"'/?; letting m — oo, we see that u cannot be continu-
ous at p,. This contradiction shows that there exists n(1) € N such that int, Z(g,)
D Z(guy- An obvious induction yields the desired subsequence.

1.6 PROPOSITION. If X is normal and first countable, then every countably generated
z-ideal of C(X) is pure. Hence, in such spaces, countably generated z-ideals are the
ideals O, with A running on the zero-sets of BX.

ProoF. By Lemmas 1.5 and 1.3(ii).

2. The example. In this section we describe a space X and a countably generated
z-ideal I of C(X) that is not pure. (What we construct is a space X and a sequence
(Z,),c, of zero-sets of X such that int, Z, O Z,,,, but X \ Z, and Z, are not
completely separated, for every n € w; this disproves the conjecture in question
(Lemma 3(a) and Lemma 2, §1).)

The space is obtained by attaching together, in a certain way, infinitely many
copies of Tychonoff planks; w = w, and w, are the cardinals &), 8/, respectively,
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considered as initial ordinals, with their order topology. Consider the (complete)
Tychonoff planks T* = (w, + 1) X (w + 1); let S* denote the space obtained from
T* by identifying all points of the “top edge” (w, + 1) X {w} to a point c. It is
straightforward to see that S* is a compact Hausdorff space with clopen basis.
(One can picture it as a set of “rays” centered at c, each ray being a copy of w + 1,
with ¢ as limit point.) The (complete) book is the space B* = S* X (w, + 1), with
product topology. Clearly, B* is a compact Hausdorff space with clopen basis. The
subspace W* = {c} X (w; + 1) is a copy of w, + 1; it is called the back of B*.
Points of B* \ W* are triples (a, m, B) with a, B € w, + 1, m € w; a, m, S may be
thought of as “cylindrical coordinates” a being the angle, m the radius, 8 the
height; but it is more fitting to think of « as the page in which the point lies, and m,
B as the column and the line, respectively at which one finds the point on the ath
page. Thus, the book has R, pages, each page has w = 8, columns and 8, lines.
For a better understanding of the arguments which follow it is useful to keep this
picture in mind. The top section of B* is the subspace S* X {w,}; for each m € w
we have the mth top column C,, = {(a, m, w,): a € w, + 1} itis a copy of w, + 1.
The vertex of B* is the point v = (c, w,) (€ W*). The top edge E of B* is the
subspace {(w;, m, w;): m € w} U {v}; itis a copy of w + 1. The incomplete book B
is the subspace B* \ E.
We need some facts on B, B*.

2.1 LeMMA. (i) W* is a zero-set of B*.
(i) B is an open dense C-embedded subspace of B*. (Hence, B is pseudocompact,
and B* = BB)

PrOOF. (i) Define ¢: B* — R to be 0 on W*, and put ¢(a, m, B8) = 27™ for every
(a, m, B) € B*\ W*. It is easy to see that ¢ is continuous. The proof of (ii) is
deferred until §3. [J

Consider now the space A* = (w X w) X B*, with product topology. Since
w X w is discrete, A* is simply a topological sum of 8, disjoint copies of B*, it is
locally compact and o-compact (hence realcompact) but not compact. It is called
the (complete) library; its subspace A = (w X w) X B, the incomplete library, is
open dense and C-embedded in A* (Lemma 2.1(ii)); then A* is the realcompactifi-
cation of A. Given r € w, the subspace 3* = ({r} X w) X B* is called the (com-
plete) rth shelf of A*; and ({r} X {s}) X B* is the sth book of the rth shelf (the
meaning of 3, incomplete rth shelf, should be obvious). We now “attach” to each
other the books of A* in a certain way; we shall obtain a quotient X* of A*, which
will have the image X of A as dense and C-embedded subspace; the space X will
yield our example. Fix a bijection u: w - w X w, u(s) = (s,, 5,). Define a (noncon-
tinuous) map pu: A* — A* piecewise, as follows: points of A* which do not belong
to the back of any book are left fixed; if p lies in the back of the sth book of the rth
shelf, say p = ((r,s), (¢, B8)), B € w, + 1, then define u(p) = ((r + 1, 5)),
(B, 55, ;). In other words, p “attaches” the back of the sth book of the rth shelf
(this back is a copy of w; + 1) to the s,th top column of the s,th book of the
(r + 1)st shelf. (This column is a copy of w, + 1, too.) The equivalence relation
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identifies x and u(x), for every x € A*; since p is idempotent (i.e. p o p = p, as is
easy to see) each equivalence class contains at most two points (exactly one if the
point does not lie on the back or on the “top section” $* X {w,} of any book); this
implies that the quotient is a 7),-space (but we do not need, at this point, any
separation property for the quotient; in §3 it shall be proved that the quotient is a
T, zero-dimensional space).

Let X* be the quotient, g: A* — X* the quotient map. It is easy to verify that
g (q(A)) = A (vertices of books are mapped by p into points of top edges); since
A is open (and dense) in A*, this implies that X = g(A) is open (and dense) in X*,
moreover the quotient topology of X (via the map g|A) coincides with the subspace
topology.

By well-known properties of quotients, f € C(A*) may be factored as g ° g, with
g € C(X*) if and only if f is constant on the equivalence classes of g; this may be
restated as f o u = f. The same holds true for A and X, of course. We claim that

2.2 LEMMA. X is dense and is C-embedded in X*. Hence C(X) and C(X*) are
isomorphic.

ProOF. Given g € C(X), consider h = g o (q|A) € C(A). As observed before, A
is dense and C-embedded in A*; let h* denote the continuous extension of 4 on
A*. Since h o p = h, also h* o p = h* (given a vertex of some book in ¥, u maps
it into some point of the top edge of some book of ¥, ,, h must eventually assume
the same value on tails of the back of the book in the rth shelf and in the top
column of the book of the (r + 1)st shelf to which u attaches this back). Hence h*
factors as g* ° g, with g* € C(X*) being the required extension of g.

We now define a sequence (f,),c, of functions of C(A*), compatible with the
equivalence relation; the sequence (g}),c, of C(X*) (where g¥ o g = f, for each
n € w) will be shown to generate a z-ideal of C(X*) which is not pure. Define f, to
be identically zero on U, ,,, Z;. This forces us to put f, identically zero on all
the backs of books of 2*; we define f, on the other points of books of the nth shelf
by means of the function ¢ used in the proof of Lemma 1(i) of this section. On the
mth top columns of books in the nth shelf, f, has then constant value 27™; use this
constant value to define f, on books of the (n — 1)st shelf attached to these
columns. Repeating this last procedure, it is easy to define f, (piecewise constant)
on all books of all shelves of lower degree. It is clear that f, is g-compatible, i.e.
Jo =8 ° g with g* € C(X*). Put g, = g}|X.

Denote by I the ideal generated by (g,),c,, in C(X), by I* the (isomorphic) ideal
in the (isomorphic) ring C(X*).

2.3 LemMA. (i) I is a z-ideal of C(X).
(ii) I* is not pure in C(X*).

PRrROOF (i) We prove that inty, Z,(g,) 2 Z(g,,,), for every n € w [cf. Lemma
1.3]. In fact g*(Zx(g,+1) C 4 C 97 (Zx(g,)) where 4 is U,,,, Z, without the
point of the “top sections” of the books of 2, ,,i.e. 4 = (U,5,4+1Z)\¢ ¢ 2Z,.
Since A4 is an open subset of A and is A = g*¢(A), the required result follows.



COUNTABLY GENERATED z-IDEALS OF C(X) 509

(ii) We prove that 4 = X* \ Z,.(g8) and Z,.(g}) are not completely separated,
for any n € w. In fact, the closure of 4 in X* meets Z,.(g¥), as we now show. Take
any vertex of any book of the rth shelf, for any r > n, say ((, s), v). Then
P = q((r, 5), v) € Zy.(gY); and any open neighbourhood V* of p in X* meets 4.
For, g<(V*) is an open neighbourhood of ((r, s), v) in A*; then ¢“°(V*) contains
infinitely many top columns of the sth book of the rth shelf; by equivalence,
g (V*) contains also the backs of infinitely many books of the (» — 1)st shelf; it is
then a neighbourhood of infinitely many vertices of books in this shelf, repeating
the procedure, we see that g~ (¥*) is a neighbourhood of infinitely many vertices of
books of 2§; thus g (V*) N Coz,.(fy) # J; hence V* meets 4 = g(Coz,.(fy)).

3. In this section we give a proof of (ii) of Lemma 2.1 which asserts that B is
C-embedded in B*.

We shall also prove that X and X* are Hausdorff spaces with clopen basis.

ProoF. Let f € C(B). We first prove that f extends to a continuous function
(which we still call f) on B*\ {v}. Observe that for every m € w the subspace
Cr = {(a,m, B): @, B € w,} is clopen in B* and is homeomorphic to the space
Q% = (w, + 1) X (w, + 1) of [GJ, 8L]. From the same reference, we know that
Q = 9*\ {(w;, w,)} is C-embedded in Q*. Clearly C,, = C} N B is a copy of Q2.

Given f € C(B* \ {v}), observe that f is eventually constant on the back, i.e.
there exists 8 € w, such that f(c, 8) = f(c, B) for all B € w,, B8 > B. For simplic-
ity, assume this eventual value to be 0; and put f(v) = 0. The extension so obtained
is continuous: otherwise, there exist ¢ > 0 and a sequence p, = (a,, m,, B,), with
B, > B, B, €Ew,a, €Ew +1,and m, € , lim,_,, m, = oo, such that |f(p,)| > e.
In the compact space B*, (p,), has cluster points; since m, — 00 as n — o0, such a
cluster point belongs to the back W*; and since 8 < sup, B, < w,;, such a cluster
point is necessarily some (c, 8'), with 8 < B’ < w;. Then f(c, B’) = 0; but continu-
ity of f at (c, B’) implies | f(c, B’)| > ¢, a contradiction. This ends the proof.

Given a complete book B*, and a point (&, m, B) € B*\ W* a neighbourhood
base for it in B* consists of “rectangles”

) Vg={(,mm)EB*a<{<a&B<n<B}witha<ap<B

For a point (¢, B) € W* a neighbourhood base is _

@ Vog={cm): B<n<BYU{Enn): §€w +1, n>m; B<n< B)
withm € w, B < B.

Next, a neighbourhood base for the back W* of B* consists of the sets

QV,=W*U {(a,nB)a,B Ew +1,n>m},withm € w.

All these sets are obviously clopen in B*.

3.1 PROPOSITION. X* has a clopen basis.

Proor. Take a point p € A¥*, p belongs to some book of, say, the nth shelf *. If
p is neither in the back, nor in the top section (see §2) of the book, then there exists
a neighbourhood V,, 4 of p in the book (type 1) such that the equivalence relation is
the identity on V, g. Then ¢(q(V,)) = V,4, and g(p) has a clopen neighbour-
hood basis in X*. Assume now that p = u(p’), with p’ in the back of some book in
%_1- Take for p’ a clopen neighbourhood ¥V, of type 2, V,, 4.; take for p, in its



510 ATTILIO LE DONNE

book a neighbourhood ¥, (type 1) Vj. 5. Assuming that p’ is not the vertex of its
book, we have Vy, U V, = g q(V, U V), so that g(p) has a clopen neighbourhood
basis in X*. Finally assume p = p(p’), with p’ = v, vertex of some book in Z*_,.
Then the books of 3%_, are either disjoint from p*(V),), or, otherwise, their back is
contained in p=(¥;). Choose a clopen neighbourhood of these backs of type 3, and
consider their union V,. Repeating this procedure with ¥, in place of ¥, and so on
inductively, we obtain a clopen subset of A invariant under p and p*; and the
proof is complete.

3.2 PROPOSITION. X* is a o-compact Hausdorff space with clopen basis. Moreover,
X* is the realcompactification of X.

PROOF. As was observed in §2, X* is a T,-space. Since A* is 6-compact, so is X*.
The remaining assertions follow easily.

OBSERVATION. It is not difficult to show that X is locally compact (but not
o-compact, being not even realcompact). And X* is o-compact, but not locally
compact.

ADDED IN PROOF. The conjecture is true also for locally compact normal spaces.
The proof, quite similar to the first countable case, will appear in a forthcoming

paper.
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