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ON FINITELY GENERATED AND PROJECTIVE

EXTENSIONS OF BANACH ALGEBRAS

JOAN VERDERA

Abstract. We show that a finitely generated projective extension B of a commuta-

tive complex unitary Banach algebra A induces an open mapping it between the

carrier spaces. We next prove that if tr is a local homeomorphism then B contains

an inertial subalgebra. Finally we present a necessary and sufficient condition for B

to be uniform if A is.

1. Introduction. Throughout this paper Banach algebra means a commutative

Banach algebra over the complex field C with an identity element 1. If A is a

Banach algebra, then its carrier space, endowed with the Gelfand topology, is

denoted by M(A) and its Shilov boundary by o(A). For each a G Av/e denote by â

the Gelfand transform of a. The Jacobson radical of A is written R(A).

From now on B will denote a finitely generated projective extension of a fixed

Banach algebra A. We suppose B to be endowed with Magid's norm under which

B is also a Banach algebra [10, Theorem 4, p. 138]. We call it the projection of

M(B) onto M(A) induced by the inclusion of A into B. The above situation is

illustrated by the following example: take B = A[x]/(a(x)) where a(x) is a monic

polynomial in A[x] (the so-called Arens-Hoffman extensions of A). For such

extensions, the structure of the projection it as well as the study of the properties

that B can inherit from A have been the main subject in a series of papers ([4], [7],

[8]). The purpose of this paper is to establish some results along these lines for the

more general situation.

To state the main results it is convenient to introduce a definition.

If \p G M(B), <j> = w(i|/), and m^ = Ker <b, then B/m^B is a finite dimensional

C-algebra whose carrier space is naturally homeomorphic to 7r"'(<p). Then we define

the multiplicity m(\¡¡) of i// as the complex dimension of e(B/m^B), where e is the

idempotent element of B/m^B such that the support of ê is {\¡/}.

Theorem l.If\px G M(B) and ir~x(ir(\px)) = {u\, . . ., tym), then given any neigh-

borhood W of ipx, there exist mutually disjoint neighborhoods V¡ of uV and a

neighborhood U ofir(\l/x) such that:

(a)7r(F,.)= U for alii,

(b)7T-\u)= ur.i Vt,
(c) Vx G W,
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(d) m(¡p,) = 2Sew-.WnK( m(9), <b G U, i = 1,. . ., m.

In particular ir is open.

Theorem 2. If it is a local homeomorphism, then B contains an A-separable

subalgebra B0 such that B = B0 + R(B).

Theorem 3. Suppose A is a uniform algebra. Then the following are equivalent:

(a) B is a uniform algebra.

(b) m(\P) = 1 for each <// G d(B).

Theorem 1 and Theorem 3 generalize analogous results for the Arens-Hoffman

case in [7] and [4], respectively. The subalgebras whose existence is established in

Theorem 2 are usually called inertial subalgebras. Other existence theorems for

inertial subalgebras have been found by Ingraham in [6] in a more general context.

In the following sections we proceed to prove the theorems stated above. For

basic facts and terminology concerning algebras over commutative rings, (algebrai-

cally) separable algebras and projective modules the reader is referred to [3].

2. Proof of Theorem l.1 If a(x) = 2"_0 a,x' G ^[x] and <b E M(A) we set

«♦(*) = 2"-o W' and ZK) = (A e C/««,(a) = 0}. For a G Z(a¿, we let

M(X, (Xq) stand for the multiplicity of X as a root of a^. If a(x) is monic we write Aa

for the Arens-Hoffman extension y4[x]/(a(x)) and ita for the projection of M(Aa)

onto M(A). We recall that a finitely generated projective module M is said to have

a well-defined rank « if for any prime ideal p of A the localized module Mp (which

is free) has rank « over the local ring Ap. In this case, we have dime M/m^M = «

for each <f> G M(A).

Lemma. Suppose that B has well defined rank, say n. Then for each b E B there is

a monic polynomial a(x) E A[x], of degree n, and a continuous mapping f*: M(B) -»

M(Aa), commuting with projections, such that:

(a)/* is onto.

(b) MWb)> <W = 2 m(9), xp E M(B),
the sum being taken over those 9 E M(B) satisfying f*(9) = f*(\p).

Proof. Fixed b E B, we consider the yl-endomorphism u of B defined by

u(c) = cb, c E B. Let a(x) = det(x/ — u) be the characteristic polynomial of u

(see [1, exercise 9 (c), p. 148] for a definition). We have a(b) = 0 and « =

degree a(x). Let/ be the A -algebra homomorphism from Aa into B determined by

the condition/([x]) = b, where [x] denotes the class of x in Aa. Let/* be the dual

map off. In order to prove (a) we note that a character in M(Aa) is given by a pair

(¿>, X) with d> G M(A) and X E Z(a^), acting in the following way

n-l n-\

2   a¿[*]'-»2  ^>{a,)X',       a, E A for each i.
i=0 i=0

Thus it follows that f*(xP) = (tt(i|/), ̂ (6)).

'This proof is not the origina! proposed by the author, which was longer. I am indebted to the referee

for the present proof as well as for the statement he suggested of the lemma in this section.
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We write u^ for the C-endomorphism of B/m.B obtained from u by factoring

by the ideal m^B. For each uV G 7t_1(</>), let e¡ be the idempotent of B/m^B such

that the support of ê, is {uV}, 1 < i < card ir~x(<b). Then B/m^B is the direct sum

of the subalgebras e¡(B/m^B), which are invariant under u^. It is easily seen that

the unique eigenvalue of the restriction of u^ to e^B/m^B) is \p¡(b), and thus

«,(*) - LI {x - Ub))miM,       * e M(A). (I)

Since the character in M(Aa) determined by the pair (<J>, X) is in Im/* if and only

if X = \i>¡(b) for some uV G ir~x(<¡>), (1) proves (a).

To prove (b) it is enough to observe that for if, 9 G M(B), f*(ip) = f*(9) is

equivalent to \p(b) = 9(b) and w(uV) = w(9).

Now we can proceed to prove Theorem 1. By [3, 4.11, p. 31], there are mutually

orthogonal idempotents ex, . . . , ep of A, such that e, + • • • + ep = 1 and e,B is a

finitely generated projective extension of e¡A with a well defined rank (over e¡A) for

each /'. Hence without loss of generality we may assume that B has a well-defined

rank over A, say «.

If we put B0 = B <&AC(M(A)) (we denote by C(X) the algebra of continuous

complex functions over a compact space A'), then B0 is a finitely generated

projective extension of C(M(A)) [3, 2.1, p. 12] with a well-defined rank over

C(M(A)) (in fact, the rank is «). It can easily be seen that M(B0) is homeomorphic

to M(B) under the map h induced by the A -algebra homomorphism b -» b ® 1 of

B into B0. But h preserves the multiplicity, so we may also assume that A =

C(M(A)).
Let bx, . . ., bk be a set of generators of B over A and let a,, . . ., ak be monic

polynomials in A[x] satisfied by bx, . . . , bk respectively. Put £, =

(( ' ' ' iAa )a ) ■ ■ ■ )ak> the iterated Arens-Hoffman extension generated by

a,, . . . , ak. By construction we have a continuous A -algebra homomorphism from

Bx onto B. Applying k times [8, 4.2, p. 564] we obtain that Bx is uniformly dense in

C(M(BX)). From this it follows that B is uniformly dense in C(M(B)).

Using this fact, we can consider b G B and e > 0 such that b separates the

points of w_I(îr(t//,)) and

V(^x; b, e) = {9 G M(B)/\9(b) - 4>x(b)\ < e} c W,

where the equality is a definition. Let a(x) and f* be related to b as in the

lemma. Then V(^x; b, e) =/*"10/(/*('r'i); [x], e)). By Propositions 1.1 and 1.3 of

[7],  there  are  mutually  disjoint A/-neighborhoods   Vf,_, V*  of the points

/»(^,), . . . ,/*(yU respectively, such that <rra(V*) = wa(V*) for each /, <n~ V„(V\))

= U, Vf and Vx* c V(f*(4>x); [x], e). The sets U = tr^Vf), V¡ = f*~\Vf) satisfy
(a), (b) and (c). (U is a neighborhood of ir(\px) because ira is open owing to [7, 1.2,

p. 358]). In order to prove (d) f ix <p G U and i G [l, ... ,m). Since b separates the

points of tt~x(it(\(/x)) and because of the definition of A/-neighborhood we have

m(^) = MiMb), <V*,)) = 2 Mi\, a,) (2)
x

where A runs over the set {f?(6)/f? G tt~\<¡>) n V,}.
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On the other hand, by part (b) of the lemma we have

Mft> a*) = 2 m(v),   for each X, (3)
v

where 17 runs over the set {9 E ir~x(<j>)/9(b) = X}. Now part (d) of the theorem

follows from (2) and (3). Theorem 1 is thereby proved.

Using Theorem 1 and [9, 1.6, p. 677] we immediately obtain the following.

Corollary. 8(B) - v-\ô(A)).

Remark. A point \p E M(B) is called a singular point if ir fails to be a local

homeomorphism at \p. From the (topological) conditions (a), (b) and (c) of the

theorem and the uniform boundedness of the cardinal of the fibers of m, it easily

follows that the (closed) set of all singular points of M(B), as well as its projection,

has empty interior.

3. Proof of Theorem 2. We need a lemma.

Lemma. If it is a homeomorphism, then B = A.

Proof. The same argument used at the beginning of the proof of Theorem 1

shows that we may suppose that B has a well-defined rank, say «. For b E B let

a(x) = aQ + axx + • • • +<*„_,x"-1 + x" he as in the lemma preceding Theorem

1. From (1) we obtain b = (-n~xan_x)'EA. This is the proof.

Now we can give a proof of Theorem 2. First recall that by a strongly separable

extension is meant a finitely generated projective separable extension. It is well

known that B <S>^ F is a finitely generated projective extension of A. Also

M(B ®AB) is (homeomorphic to)

M(B) XM(A) M(B) = {(*, 9) E M(B) X M(B)/v(tf = v(9)}

(cf. [10, Lemma 6, p. 139]). But M(B) XM(^A)M(B) is a finite covering space of

M(A) because M(B) is. Then, C(M(B) xM(A)M(B)) and C(M(B)) are strongly

separable extensions of C(M(A)) [2, Theorem 2, p. 30]. On the other hand

C(M(B)) ®c(m(a» C(M(B)) is also a strongly separable extension of C(M(A)) [3,

1.6, p. 43]. Thus, Theorem 2 of [2] allows us to identify, via the Gelfand transform,

C(M(B)) ®C(M(A)) C(M(B)) with C(M(B) XM(A) M(B)).

If e0 is the separability idempotent for C(M(B)) [3, p. 40], by the Shilov

idempotent theorem there is an idempotent e G B ®AB such that ê = e0. Set

B0 = {b E B/(b <8> 1 - 1 <8> b)e = 0}. If e is written as e = 2k xk <S> yk, xk, yk E

B, we show that the following relations hold:

2 xk ® xj <8> yjj = 2 xk ® xjyk ® yp (4)
kj kj

2 xk ® yk = 2 yk ® xk, (5)
k k

S xkyk = 1. (6)
k
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To prove them, consider the A -algebra homomorphisms

<px:B ®A F->F ®A B ®A B,       <p,(x ®y) = x®(l ®y)e,

<p2:B ®AB^>B ®AB ®A B,       <p2(x ® y) = x ® (y ® l)e.

Put rç = <p,(e), í = 1, 2. By the definition of separability idempotent we have

«i = 2 xk ® (1 ® yk)e0 = 2 ** ® (A ® l)eo = "2
* k

and since m, and u2 are idempotents we obtain w, = «2, which is (4).

(5) follows from the relation 2* xk ® yk = 2*.y* ® x¿ which is obtained by

appealing to the uniqueness, in the commutative case, of separability idempotents.

Now consider the commutative diagram shown below, where the vertical arrows

are the Gelfand transforms and the horizontal ones are defined by x ® y -*• xy

B ®AB 4 B

i i

C(M(B)) ®C(A/M))C(A/(F))     ->     C(M(B))

Since e0 is the separability idempotent of C(M(B)) we have p(e) = 1. But p(e) is

idempotent, so p(e) = 1. This proves (6).

Next we will show that e E B0 <8>AB0 by adapting an argument of Magid [11,

Theorem 1.3, p. 91]. Let <p be the v4-homomorphism of B into B ®^ B, <p(b) =

(b ® 1 — 1 ® b)e, b E B; thus the sequence

(0)^B0^B^B<S>AB (7)

is exact. Tensoring with B over A we obtain the exact sequence (recall that B is

.4-flat)

(0) -* B ®A F0-> B ®A B1^ B ®A B ®A B.

By (3) (1 ® <p)(e) = 0; then e E B ®^ B0 and so we can assume that each^ is in

F0. We set /íq = /x/F ® B0 and g(b) = (b ® l)e, b E B, so that g is a F0-homo-

morphism of B into F ®^ F0. We have Pq ° g = IB (by (6)), which implies that B is

a F0-factor of B ®A BQ and hence F0-projective. Using [1, Exercise 4, p. 147], we

conclude that B0 is a B0-factor of F, hence an ^4-factor of B. Therefore B0 is

A -projective and so A -flat.

Tensoring (7) with B0 we obtain the exact sequence

(0) -* F0 ®A B0^B0 ®A Bl%VB0 ®A B ®A B.

By (5) e E B0 ®A B and by (4) (1 ® <p)(e) = 0, so e E B0 ®A B0.

We claim now that B0 separates the points of M(B). Let \p, 9 E M(B) with \p =£ 9

and ir(\p) = ir(9). Suppose that \p(yk) = 9(yk) for each k. Using the fact that e0 is

the characteristic function of the set {(if/, 9') E M(B) XM(A)M(B)/xP' = 9'}, we

reach a contradiction, namely

0 = e0(4,, 9) = ê(4, 9) = 2 t(xk)9(yk) - J^ Xkyk) = *(1) - 1.

Consequently yk(\p) ^yk(ß) f°r some k and the claim follows.
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Therefore A/(7¿0) is homeomorphic to M(77) so the lemma tells us that B0 = B,

which gives B = B0 + 7?(7T). This completes the proof of Theorem 2.

Corollary. B is separable if and only if RiB) = RiA)B and it is a local

homeomorphism.

Proof. Assume first that B is separable. R(B) = R(A)B follows from [5, Lemma

1.1, p. 78]. The fact that it is a local homeomorphism follows from [10, Theorem 5,

p. 138] or by using [3, Theorem 7.1, (a) -» (c), p. 72] and our Theorem 1.

For the reverse implication we consider the inertial subalgebra BQ of B intro-

duced in the proof of the theorem. Then M(B0) = M(B). An application of the

theorem to A' = A/R(A) and to B' = B/R(B) (which is a finitely generated

projective extension of A' because of the equality R(B) = R(A)B) leads to the

conclusion that B' is a strongly separable extension of A'. For </> G M(A), if

m'ç = [a' G A'/ipia') = 0} we obtain natural C-algebra homomorphisms

B0/m+B0^ B/m+B^B'/m'+B'.

It is easy to see that g ° / and g are isomorphisms, so / is an isomorphism. Then

dime B/m^B = dime BQ/m^B0. This means that B, which is a finitely generated

projective extension of B0 (see the proof of the theorem), has (a well-defined) rank

1 over B0, that is, B = B0. Then B is separable.

4. Proof of Theorem 3. Before giving the proof of the theorem it is convenient to

discuss a norm on B which is easily seen to be equivalent to the norm constructed

by Magid. Let (6,, uy), 1 < j < k, bj G B, uy G Hom^(7í, A), be a dual basis for B

over A [3, p. 4]. If we put ||6||' = 2*_,||«/¿)||, b G B, we obtain a norm which

induces in B the coarsest topology for which each element of HomAiB, A) is

continuous. In what follows we shall suppose that each finitely generated projective

extension of a Banach algebra is endowed with this Banach algebra topology.

(b)-»(a). Bx = B ®A C(ô(A)) is a finitely generated projective extension of

C(S(A)). Using the dual basis (fy ® 1, w, ® 1), 1 < / < k, for Bx over C(S(/4)), we

see that B is topologically isomorphic to a closed subalgebra of Bx. Also we have

A/(5,) ^ ir-\8(A)) = 8(B).

If (b) is true, then Bx is C(S(^))-separable (use [3, Theorem 7.1, (c)-»(a), p. 72]).

By [2, Theorem 2, p. 30] Bx is isomorphic, via the Gelfand transform, to C(8(B)).

But by the open mapping theorem this isomorphism is also topologic. Then B is

(topologically isomorphic to) a closed separating subalgebra of C(8(B)) containing

the constant functions, that is, B is a uniform algebra.

(a) -* (b). If t|/, G M(B), <j> = tt(íx) and m(tyx) > I, there exist b G B such that

\¡/¡(b) = 0 for each uV G ir~x(<t>) and b G m^B. This last relation implies that not all

<b(Uj(b)) are 0, and so we may assume that |<K"i(¿0)| =28 > 0. For each e > 0

there are neighborhoods V¡ of \¡/¡, 1 < i* < card w"'(<p), and a neighborhood U of <p,

such that tt-\U) = U , V„ |^(è)| < e for each i/< G ir_1(f7), and |w(u,(¿>))| > 8 for

each 03 G U.

Suppose \px G 8iB). Then <p G 8iA) and therefore we can find a G A with
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llalla = 1 and |a(w)| < miníe/U^H^, 1), for each u> E U. According to the hy-

pothesis there exists an M > 0 such that \\c\\x > MC^ßu^c)^), c E B; then

e > Ha&ll. > A/(2ll«*(-*)ll.) > M\\aux(b)\\ao>M8

which is a contradiction because e is arbitrary. Thus \px E 8(B) and the theorem is

proved.
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