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STABILITY OF PERIODIC ORBITS IN

THE THEOREM OF SARKOVSKII

LOUIS BLOCK

Abstract. Let/be a continuous map of a closed, bounded interval into itself. It is

shown that the conclusion of the theorem of Sarkovskii holds for perturbations of/.

In other words, if / has a periodic point of period k, and g is a continuous map

close to /, then g has periodic points of certain periods.

1. Introduction. This paper is concerned with the periodic orbits of continuous

mappings of the interval to itself. Such mappings (sometimes called first order

difference equations when studied from this point of view) arise as models for

various phenomena in the natural sciences. See [2] or [3] for some examples and

references.

Let / denote a closed, bounded, interval on the real line, and let C°(I, I) denote

the space of continuous mappings of / into itself with the topology of uniform

convergence. For / G C°(I, /) let P(f) denote the set of positive integers k such

that/has a periodic point of least period k.

Consider the following ordering of the positive integers:

1, 2, 4, 8,.7 • 8, 5 • 8, 3 • 8,.. .,

7 • 4, 5 • 4, 3 • 4, . . . , 7 • 2, 5 • 2, 3 • 2, . . . , 7, 5, 3.

We will refer to this ordering as the Sarkovskii ordering. A. N. Sarkovskii has

proved the following theorem (see [4] or [5]).

Theorem (Sarkovskii). Let f G C°(I, I). If n G P(J) and k is to the left of n in

the Sarkovskii ordering then k G P(f).

In studying properties of the orbits of mappings, it is desirable to prove that a

given property is stable, in the sense that if a map / has the property then

perturbations of / (maps close to / in an appropriate topological space) also have

the given property. This is important from a physical point of view, because when

one uses a mapping as a model of some phenomena there will normally be some

possibility for error. For most stability theorems, one must consider C ' mappings

with some restrictions and C ' perturbations. However, in this paper we prove the

following result, which shows that some stability exists in Sarkovskii's Theorem, in

the C° topology for all/ G C°(I, I).
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Main Theorem. Let f G C°(I, I) and suppose that n G P(f). There is a neighbor-

hood N off in C°(I, I) such that for every g G N and every positive integer k with k

to the left of n in the Sarkovskii ordering, k E P(g).

In proving this result, we use a theorem of Stefan, [5], and a lemma from [1]

(both of which will be stated in the next section), in addition to the theorem of

Sarkovskii.

We remark that in general if / G C°(/>1) (or / G C\l, I)) and n E P(f) then

perturbations of / need not have a periodic point of period ».

2. Preliminary definitions and results. Let / G C°(I, I). For any nonnegative

integer n, we define/" inductively by/0 is the identity map of / and/" = / ° f~ '.

Let p E I. We say p is a periodic point of / if p is a fixed point of f for some

positive integer n. If p is a periodic point of /, the smallest positive integer n with

f(p) = p is called the period of p.

We define the orbit of p to be {/"(p): n = 0, 1, 2, . . . }. If p is a periodic point,

we say the orbit of p is a periodic orbit, and we define the period of the orbit to be

the period of p.

Finally, for/ G C°(/, /) we let P(f) denote the set of positive integers k such

that/has a periodic point of period k.

We now state two elementary lemmas which will be used in the next section.

Lemma 1. Let f G C°(7,1). Suppose M and L are closed subintervals of I such that

f(M) D L. Then there is a closed interval K E M with f(K) = L.

Lemma 2. Let / G C°(I, I). Suppose K is a closed subinterval of I with K c f(K).

Then f has a fixed point in K.

We will also use the following lemma from [1] (see Lemma 10 in §3 of [1]).

Lemma 3. Let f E C°(7,1). Suppose f has a periodic orbit {P\,P2>P-nP*} of period

4 with px <p2 <p3 <p4- ///({P1.P2}) ** {Py Pa} (ben / has a periodic point of

period 3.

We conclude this section by stating the following theorem of Stefan (see

Theorem 2 of [5]) which will be used in the next section.

Theorem (Stefan). Let f G C\l, I). Suppose n G P(f) where n is odd and

n > 1, but j G P(f) for all j G {3, 5, . . ., n — 2}. Let {px, . . . ,pn} be a periodic

orbit of f of period n with p, <p2 < ■ • • <pn. Let t = (n + l)/2. Then either (A)

or (B) holds.

(A)/(p,_J = Pt+kfor k = 1, . . . , t - \,fipt+k) = p,-k_xfor k = 0, ...,/- 2,
andf(p„) = p,.

(ß)ÄP,-k) = Pt + k + \f°r k = 0,...,t- 2,f(pt+k) = pt-kfor k = 1, . . . , t - 1,

andf(px) = p,.

3. Proof of the Main Theorem.

Lemma 4. Let f G C°(7, /) and let k be an odd positive integer with k > 3.

Suppose that there is a point y E I such that the following hold.



PERIODIC ORBITS IN THE THEOREM OF SARKOVSKII 335

(i)/*-2(v) <f-\y) </*_6(v) < • • ■ </3(>0 </(v) <y.

(2)v <f(y) <f\y) </6(v) <   •    <fk~\y)-
(3)7 < A v).

Then k E P(f).

Proof. Since f(y) < v and/(/(v)) >/(v),/has a fixed point e G (/(v),>>). Let

Mx = [e, v], M3 = [y,/2(v)], . . ., and M, = t/*"3^),./*"'^)!. Also, let M2 =

[/(y), 4 M4 = t/3(v),/( v)], . . . , and Mk_x = [/*-2(y),/*-4(y)].

Note that /(Ar}) d A/y+1 for each y = 1, . . ., A: — 1 and/(A/A) d A/,. Hence, by

Lemma 1, there are closed intervals Kx, K2, ■ ■ ■, Kk with Kj c Mj for each y =

\,...,k such that /(^) = A/, and /(Ä,) = j^+1 for each / - 1.it - 1. It

follows that/*(Ä\) = Ai,. By Lemma 2,fk has a fixed point z 6 Jf,.

Suppose that fJ(z) = z for some j E {I, . . ., k — 1}. Since /y'(z) E MJ+X, it

follows that either 7 = 1 and z = e, or j = 2 and z = v. But z = e is impossible

since /2(z) G M3. Also, j = 2 and z = v is impossible since y </2(y). Hence

f(z) =7^ z for ally G {1, . . . , k — 1}. Thus, z is a periodic point of/ of period &.

Lemma 5. Let f G C°(I, I) and suppose n G P(f) where n is odd and n > 3. Then

there is a neighborhood N of f in C\l, I) with the property that if g G N then

(« + 2) G P(g).

Proof. By the theorem of Sarkovskii it suffices to prove this lemma in the case

thaty G P(f) for ally G {3, 5, . . ., n — 2}. Hence, we assume that this is the case.

Since n G P(f), f has a periodic orbit {px, . . . ,pn} of period n, with px <p2

< • • • <p„. Either (A) or (B) (of the theorem of Stefan) must hold. Since these are

analogous we may assume that (A) holds.

Let t = (« + l)/2 and let z = p,. Then

(l)/"-2(z) </""4(z) </"-6(z) < • • •  </3(z) <f(z)<z.

(2)z </2(z) </4(z) </6(z) <       •  </"-'(z).

(3)z=/"(z).

Now, since/(/(z)) > z and/(z) < z, there is a point 6 G (f\z), z) with/(6) ■» z.

Also, since fib) > b and fiz) < b, there is a point v G (b, z) with /( v) = b. Thus,

/2(.v) = z. It follows that v satisfies the conditions of Lemma 4 with A; = n + 2.

Thus there is a neighborhood Noff such that v satisfies the conditions of Lemma 4

with A; = n + 2 for all g G A^. Therefore n + 2 G P(g) for all g G A/.

Lemma 6. Lei/ G C°(/, /). Suppose n E P(f) and n = r- s where r = 2' for some

nonnegative integer i, and s is an odd integer with s > 3. Then there is a neighborhood

N off in C°(I, I) such that for every g E N, and every positive integer k with k to

the left of n in the Sarkovskii ordering, k G P(g).

Proof. Note that n G P(f) implies that * G P(fr). By Lemma 5, there is a

neighborhood Nx off with the property that if g G Nx then (s + 2) G P(g).

Since the mapping g to gr is continuous, there is a neighborhood N of / such that

if g G A/thengr G A/,.

Let g G N. Then gr G A/,. Hence, (s + 2) E P(gr). This implies that (s + 2) -j

G P(g), wherey' = 2' for some integer / with 0 < t < i. It follows from the theorem
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of Sarkovskii that for every positive integer k with k to the left of n in the

Sarkovskii ordering, k E P(g).

Lemma 7. Let f E C°(7,1) and suppose 4 E P(f). Then there is a neighborhood N

off in C°(I, I) such that if g E N then 2 E P(g).

Proof. By hypothesis / has a periodic orbit {px,p2, P37P4) oí period 4 with

px <p2 <P3 <p4- If 3 G P(f) then the conclusion of this lemma follows from

Lemma 6. Hence, we may assume that 3 G P(f). This implies, by Lemma 3, that

f({Pi>P2}) = {P3>P*}- Hence, we must also have /({p3,p4}) = {Pi,p2}- Thus,

filfvPiï) 3 [PvP¿ and/([p3,p4]) d [px,p2].

By Lemma 1, there is a closed interval K c [p3,pA with/(AT) = [px,p2\. Let v be

the element of {px,p2} with fiv) = p4. For some x E K, fix) = v. Since x ¥=p4,

f2(x) > x. Similarly /2(y) <y for some y G AT. There is a neighborhood N of /

such that if g G N, then g\x) > x, g2(y) <y and g(z) <p3 for all z G K. Then

2 G P(g) for all g G N.

Lemma S. Let f E C°(I, I). Suppose 2m G P(/) for some positive integer m. Then

there is a neighborhood N of fin C°(I, I) such that ifgEN then 2' G P(g)for every

integer i with 0 < 1* < m — 1.

Proof. We may assume m > 2. Let r = 2m_2. Then 4 G P(f). By Lemma 7,

2 E P(g) for every g in some neighborhood Nx off. There is a neighborhood N of

/ such that if g G N then gr G A/,.

Let g G A/. Then since 2 G P(gr), 2m~l G ¿>(g). By the theorem of Sarkovskii, it

follows that 2' G .P(g) for every integer i with 0 < / < #w — 1.

The Main Theorem follows immediately from Lemma 6 and Lemma 8.
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