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THE CENTER OF A CONVEX SET

TECK-CHEONG LIM

Let X be a Banach space and K a weakly compact convex nonvoid subset with

normal structure [1]. Brodskii and Mil'man [1] constructed, using transfinite induc-

tion, a "center" of K which is fixed by every isometry mapping K onto K. In this

note, we construct a unique "center" for a weakly compact convex nonvoid subset

(not necessarily having normal structure) which is fixed by every affine isometry

mapping K into K. A similar theorem for weak* compact convex sets is also

possible under some additional assumptions.

Construction. Let K be a nonempty weakly compact convex subset of a

Banach space. We shall define Ca for all ordinals a by transfinite induction. Set

C0 = K. Let ß be an ordinal and suppose that Ca has been defined for a < ß in

such a way that (i) each Ca is a nonempty closed convex subset of K and (ii) Ca,

a < ß, is decreasing. If ß is a limit ordinal, we set Cß = H a<ßCa. Otherwise, let y

be the predecessor of ß and let

Sß = [z e Cy: z = \{x + v) for some x, v G Cy with \\x - y\\ = \ diam Cy).

Then we set Cß =Co Sß. Since Cy is the closed convex hull of its strongly exposed

points (see [2]), it is easy to see that if card Cy > 1, Cß contains no strongly

exposed points of Cy and hence is a proper subset of Cy. If card Cy = 1, Cß = Cy. It

follows that for sufficiently large ordinals S, Cs are identical and consist of exactly

one point which we call the center of K.

If A* is a Banach space such that the dual of every separable subspace of X is

separable, and AT is a nonempty weak* compact convex subset of X*, then every

weak* closed convex nonempty subset of K is the weak* closed convex hull of its

weak* strongly exposed points (see [5]-[8]). With appropriate changes, the prior

construction applies to this situation; in particular, replacing Cß by Co*^), where

" * denotes the weak* closure. Thus K has a unique center.

Theorem 1. Let K be a nonempty weakly compact convex subset of a Banach

space. The center of K is a fixed point of every affine isometry mapping K into K.

Proof. Note that in the construction, each Ca is mapped into itself by every

affine isometry of K into K.
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Theorem 2. Let X be a Banach space such that the dual of every separable

subspace of X is separable. Let K be a weak* compact convex nonempty subset of X*.

The center of K is a fixed point of every weak* continuous affine isometry mapping K

into K.

Proof. If T is an affine isometry, then r(Co Sß) Q Co Sß. By the weak*

continuity, T(Cp) = 7"(Co* Sß) <Z Cß.

Remarks. 1. It also follows from the Ryll-Nardzewski fixed point theorem (see

[4]) that the family of affine isometries on K has a common fixed point (which is

not necessarily the center). Our approach follows that of Namioka-Asplund [4].

2. The assumption of weak* continuity in Theorem 2 cannot be removed since

Example 1 in [3] shows that there are fixed point free affine isometries.
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