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A UNIQUENESS CRITERION FOR ORDINARY DIFFERENTIAL

EQUATIONS IN BANACH SPACES

M. ARRATE

Abstract. A uniqueness theorem for the Cauchy problem for ordinary differential

equations in complex Banach spaces is given. This paper generalizes and extends a

number of known results.

1. Introduction. We shall concern ourselves with the initial value problem

x'(t) = fit, x(t)),    t G (0, a),       x(0) = x0, (1)

where/is a function which maps (0, a) X E into E, a Banach space. If b G (0, a], a

solution of (1) in [0, b) is a function x: [0, b) -» E, continuous in [0, b), differentia-

ble in (0, b) which satisfies (1). This definition may be relaxed assuming that x is a

solution in Carathéodory's sense (see Goldstein [6]).

Recently Medeiros [10] and Diaz and Weinacht [4] have studied uniqueness

conditions for (1) in a complex Hubert space. Their results have been extended by

Goldstein [6], [7] to real or complex Banach spaces.

On the other hand, Nagumo's classic criterion has been modified by Bownds and

Metcalf [3], Rogers [11], Gard [5] and Bernfeld, Driver and Lakshmikantham [2].

The present paper gives a uniqueness theorem which contains those of Goldstein

as particular cases and extends to Banach spaces those of Gard and Rogers.

2. Preliminary results. Let F be a complex Banach space, with dual E*. We

denote by <x, i/-> the image of x G E by \p G E*. For each x G E let J(x) denote

the (nonempty) set of all i/- G E* such that

<x,^>=||x||2=||^||2.

We call J the duality mapping of E. If /is an operator we write its domain as D(f).

Let /: D(f) c E -> E; we say that / is dissipative if for x, y given in D(f) there

exists >/< G J(x — y) such that

Re</(x) - /( v), *> < 0.

When F is a Hubert space, J is the identity and then/is dissipative provided

Re</(x) - /( v), x - v>< 0       Vx, v G D(f).

The following result, due to Kato [9, p. 510] will be used in the proof of the

theorem.
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Lemma. Assume that u has a weak derivative u'(s) G E at t = s, and that ||w(-)ll is

differentiable at t = s. Then

||«(*)|H«(0||/<*L_, = Re<«'W. *>
for each \¡s G J(u(s)).

3. The uniqueness theorem.

Theorem. Let <j> be a function continuous in [0, a), differentiable in (0, a), and such

that <¡>(0) = 0, <K0 > Ofor t > 0. Assume that u(t), v(t) are two solutions of (1) in

[0, b), b G (0, a) verifying

(i)\\f(t,u(t))-f(t,v(t))\\ = o[<¡>'(t)].
Then, if

(ii) /(/, •) - tb'(t)l/<b(t) is dissipative for all t G (0, b) it follows that u(t) = v(t).

Proof. First, note that (ii) is equivalent to the existence, for each pair x,

v G D(f(t, •)), of a if G J(x - y) such that

Re</(z, x) - f(t,y), ^> < *'(/)||* - y\\2Mt).

Let u(t), v(t) be two solutions of (1). We may assume, without loss of generality,

that u(t) ¥= v(t) for / G (0, b). Define

m(t) =

NO - v(t)
if / G (0, b),

if t = 0.

For each £ G E*, L'Hôpital's rule and (i) yield

lim £
/->0 +

uQ) - v(t)
=   lim

í^0+

=  lim I
t->0 +

(j[u(t) - v(t)])'

/(/, u(t)) -fit,v(t))

¥{t)
= 0

and therefore

u(t) - v(t)  wtit i\   —  r,( t\    w

>0.

Now, as a consequence of the Banach-Steinhaus theorem [1, p. 255], each weakly

convergent sequence is bounded, and hence for any sequence /„ -> 0 + there exists

M > 0 such that

"(Ü - »(O
«o

< M,    for« = 1,2,3, (2)

We  use   Kato's  lemma  to  obtain  that  for  each  t G (0, b)  and  each uV

J(u(t) - v(t))

\\u(t) - 0(,)||^||«(f) - v(t)\\ = Re<«'(0 - v'(t), 0.
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Apply again L'Hôpital's rule to get

, .      1   ,.      || »(f) - v(t)
hm   m(t) = -  hm   '

Í-.0 + 2 r->OH [<Kt)Y

,    . \\u(t) - v(t)\\^\\u(t) - v(t)

~ 2 ,^o+ <Kf)<t>'(')

i lim Rc<«V) - A», jLy
2 ,^o+       x       <¡>'(t) <b(t)

< x  hm
2 /->o+

«'(0 - v'(t)

*V) <i>(0

In the last term the first factor tends to zero by (i) and upon comparison with (2)

we see that lim,_>0+ m(t) = 0 and so m(t) is continuous in [0, b). Hence for / > 0,

the mean value theorem implies there is an s in (0, /) such that

0 < m(t) = tm'(s) = t-^^Rc(f(s, u(s)) - fis, v(s)), *>

<b(s)
\\u(s) - v(s)\\2} < 0.

This is a contradiction and therefore u(t) = v(t) in [0, b).

Some well-known theorems of uniqueness can be obtained as corollaries of the

preceding theorem. For instance

Corollary 1 (Goldstein [7]). Assume that for some n G N, fit, ■) — nl/t is

dissipative for each t G (0, b). Then, given u0, ux, . . ., u„ G E there is at most a

solution of (1) in [0, b) such that u(k\0) exists for k = 0, 1, . . ., « and uk(0) = uk,

k = 0, 1, . . ., «.

Proof. Take <í>(í) = t". Taylor expansions reveal that

"    tk~luikMo\ tk-\

s«) = 2 -

*-i   (*-l)!

■   '*-V*>(0)

*-, (A: - 1)!
-uk + o(tn-\

*-, (k-iy.
+ o(f-i)=  2

,*-i

*-, (k - 1)!
uk + o(t"-')

where u, v are solutions satisfying the conditions of the corollary. Clearly

\\f(t,u(t)) - f(t,v(t))\\= o(t"-')

and the theorem applies.

Corollary 2. Let <¡> satisfy the conditions of the theorem. Suppose also that

(i)f(t, x) = h(t) + oW(t)] as (t, x) ^ (0 + , x0),

(ii)/(f, •) — <¡>'(t)I/<j>(t) is dissipative for each t G (0, a).

77ieft (1) has at most one solution.
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This corollary extends a theorem given by Gard [5] for the case E = R". When

</>(/) = /, Nagumo's criterion is obtained, and when <b(t) = e~x/t we arrive at

Roger's result [11].
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