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NEW SUPPORT POINTS OF S AND EXTREME POINTS OF 3CS

KENT PEARCE

Abstract. Let S be the usual class of univalent analytic functions/on [z\\z\ < 1)

normalized by/(z) m z + a2z2 + - ■ • . We prove that the functions

z -i(x +y)z2

f*Az)-7,-^— -        \x\-\y\-\,x*y,
(1 - yz)

which are support points of C, the subclass of S of close-to-convex functions, and

extreme points of DC(2, are support points of S and extreme points of DCS

whenever 0 < |arg(-jc/>>)| < ir/4. We observe that the known bound of it/A for

the acute angle between the omitted arc of a support point of S and the radius

vector is achieved by the functions f    with |arg(-x/^)| — ir/4.

Introduction. Let éE be the set of analytic functions on the open unit disk. With

the usual topology of uniform convergence on compacta & is a locally convex

linear topological space. Suppose % c &■ A function b in ÍB is called a support

point of 'S if b maximizes Re J over ® for some continuous linear functional J on

6B such that Re J is not constant on %. Let % "35 denote the closed convex hull of

<3J. A function b in %% is called an extreme point of %*$> if b = tbx + (1 — t)b2

implies b = ¿>, = b2 whenever 0 < t < 1 and bx, b2 G %'$>.

Let S be the usual class of univalent functions / in â normalized by fiz) = z +

a2z2 + ■ ■ ■ . A. Pfluger [10] and L. Brickman and D. R. Wilken [3] have shown

that if / is a support point of S, then / maps the open unit disk to the complement

of an analytic arc T, which tends to oo with increasing modulus. Furthermore, T

satisfies the 7r/4-property, i.e., if T is oriented so that T is (positively) traversed

from the finite tip to oo, then the angle between the oriented tangent vector to T

and the radius vector to T at any point is less than or equal to tr/4, with strict

inequality at each point of T except possibly at the finite tip.

In an early paper [1] L. Brickman proved that if / in S is an extreme point of

% S, then / maps the open unit disk to the complement of an arc which tends to oo

with increasing modulus. Later W. E. Kirwan and R. W. Pell [9] improved

Brickman's result. A special case of their result states that if / in S is an extreme

point of % S and if the omitted arc of / is smooth, then the omitted arc of /

satisfies the w/4-property, albeit, not necessarily with strict inequality.

Since S and 3CS are compact a lemma in Dunford and Schwartz [5, p. 440]

implies that if / is an extreme point of % S, then / G S. The following lemma

shows that in certain cases we can identify support points of S as extreme points of

%S.

Received by the editors February 10, 1980; presented to the Society, August 19, 1980.

1980 Mathematics Subject Classification Primary 30C75; Secondary 30C45.

Key words and phrases. Support points, extreme points, univalent functions, close-to-convex functions.

© 1981 American Mathematical Society

0002-9939/81/0000-0118/S02.00

425



426 KENT PE ARCE

Lemma. Let J be a continous linear functional on & such that Re J is nonconstant

on S. If there exist at most two support points of S which maximize Re J over S,

then each such support point of S is an extreme point o/ DC S.

It is well known that the Koebe functions kx(z) = z/(l — xz)2, |x| = 1, uniquely

maximize ReJx over S, where Jxg = xg"(0), \x\ = 1. Thus, the Koebe functions

kx, |x| = 1, are both support points of S and extreme points of DCS. Until

recently, no other support points of S or extreme points of DCS were explicitly

known. However, J. Brown [4] has determined the support points of S which

maximize Re J over S, where Jg = g(z0), 0 < |z0| < 1, and that each such support

point of S is an extreme point of DC S.

The class Q. Let 6 be the subclass of S of close-to-convex functions. In [2] L.

Brickman, T. H. MacGregor, and D. R. Wilken showed that the extreme points of

DC 6 are the functions

z -Ux+ y)z2

fx^z) = —d-*"~ '     M - M - L* +y- 0)
(1 - yz)

Later E. Grassman, W. Hengartner, and G. Schober [7] proved that each support

point of G is a function of the form (1). In [8] D. R. Wilken and R. Hornblower

showed that each extreme point of % Q, is a support point of C.

A natural question arises as to whether the functions (1) are support points of S

or extreme points of DCS. Each function f in (1) maps the open unit disk to the

complement of a half-line. Let TXJr, the omitted half-line off , be oriented so that

T is traversed from PXJ/, the finite tip of TXJ,, to oo. A computation shows that

|arg(-x/v)| is the angle between the tangent vector to r and the radius vector to

T at P . It is easily seen that the angle between the tangent vector to TXJf and

the radius vector to T decreases (monotonically) to 0 as TXJI is traversed

(monotonically) from PXJf to oo. Thus, if 7r/4 < |arg(-x/v)| < m, thtnf can be

neither a support point of S nor an extreme point of DCS (because F fails to

satisfy the w/4-property). If |arg(-x/v)| = 0, i.e., if -x = y, then f is the Koebe

function ky and is both a support point of S and an extreme point of DC S. In the

remaining case-0 < |arg(-x/v)| < w/4—T does not violate the w/4-property.

We will show for 0 < |arg(-x/.y)| < w/4 thatfXJ, is both a support point of S and

an extreme point of DC S.

To prove the main result of this paper, we recall the bound on |arg/'(z0)| for/in

S given by G. M. Goluzin [6, p. 115]. Namely, Goluzin showed that if/ G S, then

|arg/'(z0)| < 4 arcsin|z0|,        |z0| < -~. (2)

We now prove

Theorem. Let fXJ, be given by (1). If 0 < |arg(-x/v)| < tt/4, then fxo, is both a

support point of S and an extreme point of % S.
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Proof. If we differentiate f   and then evaluate at z0, we have

1 — xz0
fxAzo) "-3 •

0 -yzo)

An easy argument shows for 0 < |z0| < 1 that

larg/^o)! < 4 arcsin|z0| (3)

and that equality occurs in (3) if and only if

arg xz0 = — arccos|z0|,    arg yz0 = arceos |z0| (4)

or

arg xz0 = arceos]z0|,    arg vz0 = — arccos|z0|. (5)

If (4) holds, then arg fXJ,(z0) = 4 arcsin|z0| and if (5) holds, then arg/£ (z„) =

— 4 arcsin|z0|. We note that for each pair (x,y}, |x| = |y| = 1, x2 ¥=y2, there

exists a unique z0, 0 < |z0| < 1, such that exactly one of (4) or (5) holds.

Let 0 < |arg( — x/y)| < w/4 and suppose z0 satisfies (4). Then (4) implies 0 <

|z0| < sin it/%. Goluzin's bound (2) on |arg/'(-z0)l implies that the region of

variability of f'(zQ) for / in S lies in a closed sector in the closed right half-plane.

Together (2)-(4) imply that fxo,(z0) lies on the upper edge of the region of

variability of f'(z0) for/ in S. By rotating the region of variability of f'(z¿) for/in

S we can realize a continuous linear functional Jxjr whose real part is maximized

over S byfxy, namely

Jxyg= -e'W2-4arcsi»|,0iy(zo)

Similarly, if 0 < |arg( — x/_y)| < 7r/4 and z0 satisfies (5), then fXJ/ maximizes

Re Jr „ over S where

JXjg = _e-(V2-4arcs,n|z0|)g,(Zo)

We will show now that if 0 < |arg(-x/y)| < tr/4, then Re J is uniquely

maximized over S by f , and if |arg(-x/y)| = tt/4, then Re / is maximized

over S (only) byfxo, a.ndfyx. The lemma will then imply if 0 < |arg(-x/y)| < it/4,

thenf    is an extreme point of DCS.

As in the first part, we can see that if 0 < |z0| < sin ir/% and/* in S maximizes

(minimizes) arg/'(z0) over S, then f* is a support point of S and, hence, in

particular, a slit mapping. Goluzin's argument [6, p. 115], which shows that (2) is

sharp, also shows that for 0 < |z0| < 1/V2 there exists a unique slit mapping

which maximizes (minimizes) arg/'(z0) over S.

Let 0 < |arg(-x/y)| < tt/4 and let z0 satisfy (4). Since determining the func-

tions which maximize Re / over S is equivalent to determining the functions

which maximize arg/'(z0) over S, we conclude from the above that Re/ is

uniquely maximized over S by f . Similarly, if 0 < |arg( —x/y)| < 7r/4 and z0

satisfies (5), then Re /    is uniquely maximized over S hyfxo>.

Let |arg(- x/y)| = it/'4 and let z0 satisfy (4) or (5). It is easily seen, from (2)-(5)

that one of fXJ, and fyx maximizes arg/'(z0) over S and the other minimizes

arg/'(z0) over S.  Since, in this case, we have |z0| = sin it/%, it follows that
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JXJ, = Jyx. Thus, determining the functions which maximize Re Jx over S is

equivalent to determining the functions which maximize or minimize arg/'(^o) over

S. Consequently, Re JXJI is maximized over S (only) byfXJ, andfyx.

Remark. For the functions f with |arg(-x/y)| = it/4, the known bound of

tt/4 for the acute angle between the omitted arc of a support point of S and the

radius vector is achieved (at the finite tip).
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