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COMPACTIFICATIONS OF SYMMETRIZABLE SPACES

D. K. BURKE AND S. W. DAVIS

Abstract. In response to questions of Arhangel'skil, we present examples of (1)

(MA + -iCH) a symmetrizable space which is not metrizable but has a completely

normal compactification and (2) (CH) a symmetrizable space which is not metriz-

able but has a perfectly normal compactification. In the construction of (2), a

technique is developed which can be used to obtain first countable compactifica-

tions of many interesting examples.

1. Introduction. A topological space X is called symmetrizable provided that

there is a function d: X X X —> [0, oo) such that for (x, y) G X X X, d(x, y) =

d(y, x), d(x,y) = 0 iff x = y, and A Q X is closed iff d(x, A) > 0 for each

x G X — A. All Moore spaces and all semimetrizable spaces are symmetrizable,

and all T2 first countable symmetrizable spaces are semimetrizable.

In [A], the following question is raised:

Question 1.1. Is every symmetrizable subspace of a completely normal compact

space metrizable?

While this is an interesting question, we believe (and have been informed by a

reliable source) that the question which was intended by Arhangel'skil is the

following:

Question 1.2. Is every symmetrizable subspace of a perfectly normal compact

space metrizable?

In this note we give consistent answers to both of these questions by exhibiting

an example (under MA + -iCH) which answers Question 1.1 in the negative and

an example (under CH) which answers Questions 1.2 and 1.1 in the negative. This

would lead one to believe that there must be a ZFC example answering Question

1.1 in the negative, but no such example is known at this writing.

Of independent interest is an intermediate construction which is used in building

the second example. We are able to obtain from this construction, first countable

compactifications of many interesting spaces such as the "bow-tie" space and the

"tangent disk" space.

2. The first example. We begin with a preliminary lemma.

Lemma 2.1. If X is a locally compact, completely normal space, then X*, the one

point compactification of X, is completely normal.
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Proof. Suppose A C X* and F, H are disjoint closed (in A) subsets of A. If

F u H ç X, the normality of A n X will suffice to separate F and H. Suppose the

ideal point oo G H. Then oo is not a limit point of F in X*. Choose Ux, Vx disjoint

open in X* with F Ç Ux, oo G Vx. Now choose U2, V2 disjoint open in A n X

with F ç U2, H - {00} Ç V2. Now U = Í7, n t/2 and V = K, u F2 separate F

and 7/ in A.

Since a normal Moore space is completely normal, we easily get a counterexam-

ple for Question 1.1.

Example 2.2 (MA + -iCH). Let A- be a locally compact normal nonmetrizable

Moore space. For instance, X could be an w,-Cantor tree. By Lemma 2.1, X* is

completely normal, and X is a symmetrizable, nonmetrizable subspace.

Any example which supplies a negative answer to Question 1.1 by looking at a

one-point compactification must be of this type since a locally compact T2

symmetrizable space is a Moore space [A]. In fact, if A' is a symmetrizable

nonmetrizable subspace of a completely normal compactum Z, and X is Cech-

complete, a /?-space, or a wA-space, then A- is a normal nonmetrizable Moore space

[Bu].

3. The second example. To answer Question 1.2, we seek a nonmetrizable

symmetrizable space X and a compact space Z with X QZ and Z perfectly

normal. Obviously, we may assume that X is dense in Z since C\ZX will also do the

job.

We observe that X and Z must both be first countable and hereditarily Lindelöf.

First countability follows since singletons in Z are Gs-sets in the compact space Z,

and it is well known that perfect Lindelöf spaces are hereditarily Lindelöf. If X has

a countable network, then X would have a countable base [AH]. Hence, we must

have X a semimetrizable, hereditarily Lindelöf space which does not have a

countable network. At this time there are three such examples in the literature,

[B], [V], [M], and all of them use CH. Hence, in our construction we will assume

CH. The reader will note that in the initial stages of our construction we mimic

Michael's technique [M].

We begin with H, the Heath bow-tie space [H]. The points of H are the points of

the plane. For a point x = (xx, x2), we let B(x, n) be the set given by

B(x, n) = {.y G R X R: ||x - y\\ < ¿ and  J^[  < tan ¿ J.

Geometrically, B(x, «) is the point {x} together with the interiors of two sectors of

the circle centered at x with radius 1/« which have central angle 1/« and are

bisected by a horizontal line, i.e., B(x, ri) looks like a bow-tie with {x} at the knot.

It is easy to see that the topology generated by using {B(x, «):« G TV, x G H} is

a semimetrizable topology on H. We will construct our example A' as a subspace of

H. It will be useful to consider bow-ties which have been rotated. To this end, we

define a bow-tie B to have orientation a, if fi can be obtained from B(x, «), for

some x G H, n G N, by a counterclockwise rotation through the angle a. In this
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case, we write B = B(x, n, a). In particular, B(x, n) = B(x, n, 0) for each x E H,

« G N. We will be considering only the case when a E [0, m) since a bow-tie with

any other orientation equals a bow-tie with orientation in this range.

We say a set P ç H is a /?-neighborhood of a set A EH provided that for each

x E A, there exists « G A/ and 0 E [0, m) with B(x, n, 0) C P. It is clear that there

is a collection {Ua: a < c] of ^-neighborhoods of Q X Q such that if P is a

/?-neighborhood of Q X Q then for some a < c, Ua Q P. Moreover, if P is a

/?-neighborhood of Q X Q, then the Euclidean interior of P is dense in R X R.

We are now ready to construct the space X.

Example 3.1 (CH). Use CH to index the "base" for the ^-neighborhoods of

Q X Q, which was mentioned earlier, as { Ua: a < w,}. By the fact that R X R is

a complete metric space, we have that for any ß < w, the set Da<ßUa is of second

category in R X R. For each ß < w,, choose xß E (na<ßUa) - ((Q X Q) u {*„:

a < ß}). The space X = (Q X Q) u {xß: < w,} viewed as a subspace of H. It can

be seen from the arguments given in [M, Lemma 3.5] that X with the topology from

any fixed orientation is a hereditarily Lindelöf, semimetrizable space which has no

countable network.

We now exhibit a technique for building first countable compactifications on

which we will elaborate more in the general situation in the next section. For now

we apply the technique to H.

Example 3.2. There is a first countable compactification Y of the space H. We

shrink H onto (0, 1) X (0, 1) Ç [0, 1] X [0, 1] and view A" as a subset of

(0, 1) X (0, 1). The set for Y is [0, 1] X [0, 1] X S1 where Sx is a circle which we

denote by S ' = [0, 2w). For a point (xx, x2, 0) E y we define Un((xx, Xj), 9) by the

following:

U„((xx, x2), 0) =[B((xx, x2), n, 0/2) - {(xx, x2)} X Sx

U {(xx, x2, a): \a/2 - 0/2\ < 1/2«

or \(a - 2tt)/2 - 0/2\ < 1/2«}] n Y.

Now {U„((xx, Xj), 0): n E N, (xx, x2, 0) G Y) is a base for a first countable

topology on Y. Moreover H X {0} is homeomorphic to H and is dense in Y. It is

easy to see that Y is a T2 space. To see that Y is compact, suppose % is an open

cover of Y. For each x = (xx, x2) G [0, 1] X [0, 1], choose a finite subcollection <3HX

of % which covers {x} X Sx. Now U%x contains a solid torus. Moreover, since

[0, 1] X [0, 1] is compact in its usual topology, finitely many of { U 9LX '■ x E

[0, 1] X [0, 1]} must cover Y. This gives rise to a finite subcover from %, and the

proof is complete.

At this point, we can supply the compactification Z of X which answers

Question 1.2 in the negative.

Example 3.3 (CH). There is a perfect compactification Z of X. The space Z is

obtained from Y by identifying all points (xx, x2, 0) with (xx, x2, 0) for (xx, x¿ E

[0, 1] X [0, 1] - X. (Recall that we have H and thus X contained in

[0, 1] X [0, 1].) Call the quotient mapping which does the identification <b; Y -» Z.
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Since <í> is a continuous, in fact perfect, mapping, Z is compact. It is clear that

X X {0} is dense in Z. Thus Z is compactification of X.

We now show that Z is hereditarily Lindelöf. To do this, we will show that if %.

is a collection of basic open sets in Z, then there is a countable %,£% with

U % = U GlL. If x E [0, 1] X [0, 1] - X, then a base at (x, 0) in Z is given by

{(B X {0}) u ((B n X) x Sx): B is a Euclidean ball about x}. Thus it is suffi-

cient to consider collections of basic open sets centered at points of X X Sl.

Suppose   % = {$Un(xa, 0J:   a G A).   For   each   a,   let   5a = ^Í/Jx«, 0J n

({*«} X S1)- Let s¡$°= {«/^Oa- öa) - s«: « G A)- Note that for W G <¥, W =

(K X {0}) u ((V n X) x Sx) for some Euclidean open V Ç [0, 1] X [0, I].

Hence there is a countable <¥,£<¥ with U *¥, = U %. Now if z G U % -

U ^i) then z E Sa for some «6/4. Since Sx is hereditarily Lindelöf, we will be

finished when we have shown that there exist only countably many xa E X such

that Sa - U % ¥= 0. Suppose Ax Q A with ^, uncountable and Sa - U % ¥=

0 for every a G^,. For each a E Ax, Sa = {xa} X Ia for some open interval

Ia Q Sx. Since S1 is separable, there exists 0 G Sx such that for an uncountable

A2 Q Ax, 9 G Ia for every a G A2. Now {(xa, 0): a E A2) is an uncountable

relatively discrete subset of A1 X {0}, but Ar X {0} is hereditarily Lindelöf. This

contradiction establishes the result.

Remark. The reader will note that a large portion of the proof that Z is

hereditarily Lindelöf is really the proof that Z is hereditarily K,-compact. If this is

done first, we can use the fact that Z is an S^-space [HS] to get the result since it is

shown in [HS] that hereditarily X, -compact ^-spaces are hereditarily Lindelöf.

A somewhat stronger statement can be made concerning the weak base proper-

ties of Z. This is actually an % -space [D]. We point this out since % -space is one

of the strongest weak base assumptions which does not imply metrizability in the

presence of compactness. (Symmetrizable, of course, does imply metrizable in the

presence of compactness.)

4. Questions and applications of Y. The construction used in Y is a compactifica-

tion technique which uses the idea that the top and bottom of the lexicographic

square compactifies the Sorgenfrey line by taking advantage of the orientation of

the basic neighborhoods. This idea can be used with many of the interesting

examples currently in the literature for which "orientation" makes sense and the

union of neighborhoods of the assorted orientations yields a neighborhood in some

compact space. In the example in this paper, we saw that the bow-ties of the

various orientations when unioned at a particular point yielded a Euclidean ball.

We see from the above that many popular examples have first countable

compactifications. In contrast to this, it is of interest to point out an example given

in [vDP] of a Lindelöf semimetrizable space, with a countable network, for which

all compactifications contain ßN. Hence, not only the character, but also the

tightness will be large.

We conclude with a couple of questions.

Question 4.1. Can Questions 1.1 and 1.2 be answered in ZFC?
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Question 4.2. Can MA + -i CH be used to obtain a positive answer to Question

1.27
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