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ON THE DUAL OF A CERTAIN OPERATOR IDEAL

GERHARD RACHER

Abstract. For complex Banach spaces E and F and a real number 1 < p < oo let

SP(E, F) denote the operator ideal obtained by complex interpolation between the

nuclear and the compact operators. If E and F are reflexive and one of them has

the approximation property the dual of SP(E, F) is shown to be SP'(E', F"), p'

conjugate to p.

Let N denote the ideal of nuclear and K the ideal of compact linear operators.

By complex interpolation between N and K there is associated to every real

number 1 < p < oo the operator ideal Sp in [4], i.e., SP(E, F) =

[N(E, F), K(E, F)]x/p, for any complex Banach spaces E and F (that this definition

gives the same as that of [4, p. 101] follows from [1, 9.3]). It is shown there that for

any complex separable Hubert space H, SP(H, H) consists of those compact

operators whose moduli have/?th power summable eigenvalues. It is then a classical

result of Schatten and von Neumann that the Banach space dual of SP(H, H) may

be identified with SP(H, H). Here we are showing

Proposition. Let E and F be complex Banach spaces and p a real number with

1 <p < oo, \/p' + \/p = 1. If E and F are reflexive and one of them has the

approximation property then the dual of SP(E, F) may be identified isometrically with

SP\E', F'), the pairing given by (S G SP'(E', F') and T G SP(E, F)): <F, 5> =

trace(7" ° S) when E has the approximation property; <F, 5) = tracers ° T') when

F has it.

In particular the space SP(E, F) is reflexive.

Proof. We shall use the notation of [1] without further explanation. Let us

assume that E has the approximation property.

First step. Since E is reflexive E' has it too by [3 Proposition 36.1]. By Satz 3 and

Satz 7 in [4], for every S G SP\E', F') and T G S"(E, F) the product T ° S is

nuclear, and ||7" ° S\\N < || T'Usai S HSj» < RrflyflSIf^ Since E' has the ap-
proximation property, trace(T' ° S) is well defined and < ||7" ° S\\N <

||T\\s,||S\\s„, such that ß: SP\E', F') ^ SP(E, F)', given by <T, ßS) =

trace(7" ° S), is a linear contraction.

Second step, ß is an isometry. Since the linear mappings of finite rank are dense

in S"'(E', F') it suffices to show that

|| "S||S'\E',F') ^^pS^s'^Fy
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for any such map. So let S: E' —> F' be a linear map of finite rank. By the theorem

of Hahn-Banach there exists a linear form L in SP(E', F')' of norm 1 with

Il -S'ils* = (S> L-y = trace(L' ° S), when we identify L with the corresponding

bounded linear map from E to F. By definition and the duality theorem 12.1 in [1]

one has

SP\E', F')' =[N{E', F')', K(E', F')']l/p

since N(E', F') is dense in K(E', F') because of the approximation property of

E" = E. Identifying N(E', F')' = (E" ® FJ = (E ® FJ = H(E, F), the space

of bounded linear mappings from E to F, and K(E', F')' = (E" <8> FJ =

(E ® F')' = I(E, F), the space of integral mappings from E to F, which coincides

with N(E, F), since F is reflexive [3, Théorème 10.1], we obtain

Sp\E', FJ =[N(E, F), H(E, F)]'   with t = 1 - \/p = \/p'.

So for every e > 0 we can find a function n in $(N(E, F), H(E, F)) with \\h\\<g < 1

+ e and whose derivative h'(t) at the point t equals L.

For this function n we construct in the usual manner (cf. [2]) a sequence of

functions n„ in <$(N(E, F), H(E, F)) with lim^^ hn(t) = h'(t); for example,

hn(z) = exp(z2/n)[h(z + i/n) - h(z)]n/i   forO < Rez < \,n> 1.

||AJ|y< e'^IIAHy for every n. By 9.3 in [1] (second line from below) we have

$(N(E, F), H(E, F)) = <S(N(E, F), K(E, F)) isometricaUy so that hn(t) G

[N(E, F), K(E, F)l = Sp(E, F) and ||nB(0||s, < \\Kh < ^"O + e) for every n.

All together one has

||S|U''(£',o = trace(L' » S) = trace([/i'(i)]' ° S)

= lim trace([(n(f + i/n) - h(t))n/i)' » S)

= lim trace(exp(-/2/n)[«„(0]' ° S)

= lim exp(-/2/n)<n„(0, )8S>

< lim sup exp(-/2/")||A„(0!ls'll>85,||s-(£,y=-)-

< lim sup exp((l - i2)/n)(l + e)\\ßS\\s,(E, Fy

< (1 + e)\\ßS\\s,CE,Fy,

i.e.,

R"S||s''(£', F') ** ||^'S||s''(£,/:')'.

Since this inequality obtains for every S G SP\E', F'), the isometry of ß follows in

conjunction with the contractivity of ß.

Third step. The image of ß is dense in SP(E, F)'. First of all note that SP(E, F)'

is equal to [N(E, FY, K(E, F)']1^' = [N(E\ F'), H(E', F')]1'"' by the duality theo-

rem (cf. Second step). Now by the last formula in 9.3 of [1] this last space is equal

to [N(E\ F'), K(E', F')]l/P' which by definition is contained in N(E', F') +

K(E', F') = K(E', F'). Since K(E', F') is the closure of the operators of finite rank

and these are contained in SP(E', F'), ß has dense image.
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So ß: SP(E', F') -» SP(E, F') is an isometric isomorphism. Since the proof

works as well when F (hence F') has the approximation property the proposition is

established.

Let now G denote a compact group with normalized Haar measure and Lq(G)

its complex Lebesgue spaces. Let Sg(Lq(G), L9(G)) denote the set of those

operators in Sp(Lq(G), Lq(G)) which are (left-or-right-) translation invariant under

G. Since it is a closed subspace of SP(L9(G), Lq(G)) one arrives at

Corollary. Let G be a compact group and 1 <p, q < oo. Then the two-sided

q-Segal algebras 5¿(L*(G), Lq(G)) are reflexive Banach spaces.

The assertion of the corollary remains true for q = 1, since then

Sp(L\G), L\G)) = Lp\G),

which was the starting point for this note (cf. [5]).
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