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PETTIS INTEGRATION1

ROBERT F. GEITZ

Abstract. The functions that are Pettis integrable with respect to perfect measures

are characterized.

Since its introduction by B. J. Pettis in 1938, the Pettis integral of a weakly

measurable function has proved remarkably resistant to analysis. Nearly forty

years passed without a significant improvement on Pettis's original work. Recently,

the Pettis integral has begun to come into its own. Charles Stegall has proved that

on perfect measure spaces the range of the indefinite Pettis integral is relatively

compact [3, Proposition 35]. In this paper we shall carry on this work. With the

help of fundamental theorems due to Fremlin and James, we completely char-

acterize Pettis integrability in terms of convergence of simple functions. Our work

shows that a bounded function / from a finite perfect measure space to a Banach

space X is Pettis integrable if and only if there is a bounded sequence (fn) of simple

functions such that lim„_>00 x*fn = x*f a.e. for each x* in X*. This parallels the

situation for Bochner integrability. A bounded function / from a finite measure

space into a Banach space X is Bochner integrable if and only if there is a null set

A and a sequence (/„) of simple functions such that hm,,^^ x*fn(u>) = x*f(to) for

all x* in A^ and for all co not in A.

I. Terminology. Let (ß, 2, p) be a finite measure space and let X be a Banach

space. A function /( • ) from ß into X is weakly measurable if the scalar function

x*f(-) is measurable for each x* in the dual space X*. The function / is Pettis

integrable if for each Tí in 2 there is an element of X, denoted /¿Z d¡i, that satisfies

(x*, jjßf í/p) = fEx*f dp, for every x* in X*.

Another form of measurability can be attributed to some vector-valued func-

tions. If/is almost everywhere the limit (in the norm topology of X) of a sequence

of simple functions, then / is strongly measurable. The Pettis Measurability Theo-

rem [5, Theorem 1.1] says that a function is strongly measurable if and only if it is

weakly measurable and off a null set it has separable range. If / is strongly

measurable and if /||/|| <7p < oo then the Bochner integral of/exists as an element

of X [1, Theorem 2, p. 45], and/is trivially Pettis integrable. The Bochner integral

has received considerable study-see [1].
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A family <ï> of scalar functions is uniformly integrable if lim^^J'E\tp\ dp. = 0

uniformly for tp in $. Note that pointwise uniformly bounded famihes are neces-

sarily uniformly integrable. An easy consequence of the Orlicz-Pettis theorem is

that if /: ß -> X is Pettis integrable then {x*f: x* E Ball^*)} is uniformly

integrable [1, Theorem 8, p. 55].

All of our work builds on a result of D. M. Fremlin, and for this we need the

concept of a perfect measure space. A finite measure space (ß, 2, p) is perfect if for

each measurable \p: ß —» 7? and for each set E c R such that yp'x(E) E 2, there is

a Borel set B c E such that p[t//"'(7i)] = p[\(/~x(E)]. The class of perfect measure

spaces is very broad; in particular, all Radon measure spaces are perfect [7,

Theorem 10]. Fremlin's theorem [2, Theorem 2F] says that every sequence of

measurable scalar functions on a finite perfect measure space has either a subse-

quence with no measurable pointwise cluster point, or a subsequence that con-

verges almost everywhere.

The following lemma adapts this theorem to our needs. Note that if /: ß —» X

and if (x*) is any bounded sequence in X*, then it follows from Alaoglu's theorem

that every subsequence of (**/) has a pointwise cluster point. Combining this with

Fremlin's theorem, we have

Lemma 1. Let (ß, 2, p) be a finite perfect measure space, and let f: ß —» X be

weakly measurable. If (x£) is a bounded sequence in X*, then there is a subsequence

(xí) such that lim^^xy exists a.e. If x£ is any weak*-cluster point of (x£j), then

lim,.^ x^f = x$f a.e.

II. Convergence theorems. A bounded vector-valued function is Bochner integra-

ble if and only if it is almost everywhere the norm limit of a sequence of simple

functions. This statement concerns only the measurability of the function in

question-all strongly measurable bounded functions are Bochner integrable. The

state of affairs for Pettis integrability is more complex. R. S. Phillips gave an

example in 1940 of a bounded weakly measurable function that is not Pettis

integrable [6, Example 10.8]. Philhps's example is so pertinent that we reproduce it

here.

Example 2. A bounded, nonintegrable function.

Sierpinski constructed [9, pp. 9-10] a subset B of [0, 1] X [0, 1] with the

properties

(1) for each number t0 in [0, 1] the set [s: (s, t0) E B) is countable and

(2) for each number s0 in [0, 1] the set {t: (sq, t) & B) is countable.

Define/: [0, 1] ̂ /JO, 1] by

We show first that / is weakly measurable. Phillips proved [7] that every element ß

of the space ba[0, 1] (= l*J0, 1]) may be uniquely written as the sum of two

measures, ß = ßx + ß2, such that ßx has countable support and ß2 vanishes on null

sets. Since the set {t: (s0, t) & B} is countable for each number Sq, we have

f f(s0) dß2(t) = f l dß2(t).
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The countability of the support of /?„ together with condition (1), implies that

J /(-*o) dßx(t) = 0

for almost all numbers i0. It follows that

f f(s0) dß(t) = f 1 dß2(t)

for almost all s0 and that/ is weakly measurable.

To see that/is not Pettis integrable, for each t0 in [0, 1] let e, be the "evaluation

at /0" functional on /„JO, 1]. Then from condition (2) we have

/ et0 ° /(•*) ds = j Xb(s, t0) ds = 0.

In other words, if the Pettis integral of / exists, it must be the 0-element of [0, 1].

However, an easy calculation shows that 0 £ co/([0, 1]). There thus exists an

element x* of /£[0, 1] such that x*f(s) > 0 for all s in [0, 1], and fx*f(s) ds > 0.

This contradiction shows that / cannot be Pettis integrable.

The next theorem is the keystone of this paper, a Pettis analogue of Vitali's

classic convergence theorem. Note that conditions (a) and (b) of this theorem

guarantee that for each x* the sequence of scalar integrals (fEx*f„ dp) converges to

¡Ex*f dp. Condition (a) and Vitali's theorem also insure that if hm/I_>MJc*/= x$f

a.e., then lim,,^^/^**/ dp = }Ex*f dp. These conditions may be replaced by any

others that similarly guarantee the convergence of the appropriate scalar integrals.

In the light of the Phillips example, it is surprising indeed that this suffices to insure

the integrability of/.

Theorem 3. Let (ß, 2, p) be a finite perfect measure space and let f: ß —» X. If

there is a sequence (fn) of Pettis integrable functions from ß into X such that

(a) The set {x*fn: x* E Ball^*), n E N) is uniformly integrable, and

(b)for each x* in X* hm„_>(X) x*fn = x*f in measure,

then f is Pettis integrable and hm„_M/£/„ dp = f^ dp weakly for each E in 2.

Proof. Fix E in 2, and let C be the weak closure of {/¿/n dp: n E N). Since

Vitali's convergence theorem guarantees that lim„_00 jEx*fn dp = }E x*f dp for

each x* in X*, we observe that C is bounded and that C\{fEf„dp: n E N)

contains at most one point. Suppose C is not weakly compact. An appeal to a

theorem of James [4, Theorem 1] produces a bounded sequence (x£) in X*, a

sequence (x„) in C, and an e > 0 such that **(*„) = 0 for k > n and **(*„) > « for

n > k. By passing to subsequences and relabeling, we can find a subsequence (g„)

of (fm) and a subsequence ( y£) of (x*) such that

j y*g„ dp = 0   for k > n,
E

i y*gn dp > e   forn> k,   and
Je

hm  f x*gndp= f x*f dp   for all x* in X*.
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Apply Lemma 1 to the sequence (y*f) to find a subsequence (yíf) that

converges almost everywhere. If y* is any weak*-cluster point of (y?) then

lim^^ yj^f = y */ a.e. Vitali's theorem now shows that Hm^^ f¿yfj dp =

/fiVo/ dp. To force a contradiction, note that for each k limn^,w /^y *g„ dp =

¡¿ykf dp. Hence \¿ykf dp > e for each k, and /¿y^fdp > e. On the other hand,

notice that since each gn is Pettis integrable, the function x* -*• jEx*gn dp is weak*

continuous. Hence, if ( y*) is a subnet of ( y?) that converges weak* to y*, then

lim f y*gn dp = lim y* f g„dp = y* fg„dp= f y¿gn dp.
a   JE a JE JE JE

Since this holds for each n, and since lim„_>0O/£y*gn <7p = /^y*/ <7p, we see that

/^y*/ ¿7p = 0. This contradicts the inequality /^y */ dp > 2, and proves that C is

weakly compact. Since limn_<X)/£x*/n i/p = j Ex*f dp, the sequence (f^dp) of

Pettis integrals is weakly Cauchy. It follows from the weak compactness of C that

Ivain^^ {¡¡ft dp exists weakly in X. This limit can only be /¿Z dp. As this holds for

each E in 2, the function/is Pettis integrable.

Theorem 3 can also be stated in the form of the traditional Dominated Conver-

gence Theorem.

Corollary 4. Let (ß, 2, p) be a finite perfect measure space and let f: ß -> X.

Suppose there is a sequence (fn) of Pettis integrable functions from ß into X such that

\imn^xx*fn = x*f a.e. for each x* in X* (the null set on which convergence fails

may vary with x*). If there is a scalar function >p with ||/„(-)ll < $(■) a.e. for all n

and if J\b dp < cc, then f is Pettis integrable and lim^^^ ¡Efn dp = j^ dp weakly

for each E in 2.

HI. Simple functions and Pettis integrability. The type of convergence of Theo-

rem 3 and Corollary 4, lim,^^, x*fn = x*f for each x*, is the natural notion of

convergence for weakly measurable functions. We will show that this convergence

lies at the very heart of the Pettis integral. Consider the following example.

Example 5. Let p denote Lebesgue measure on [0, 1] and define /: [0, 1] —>

¿Jj")by

/(') = X[o,o-

This function is weakly measurable (each x*f is a function of bounded variation)

and Pettis integrable, but not strongly measurable. We will show that / is the limit

in the sense above of a sequence of simple functions.

Let itn be the nth dyadic partition of [0, 1]. For any point t belonging to a dyadic

interval [(/ - l)/2", i/2") in itn, let

fnU) = X[0.i/r)^Lao(p).

This defines a sequence (/„) of simple functions from [0, 1] into Lx(p). Any

element x* of L*o(p) may be identified with a bounded additive measure ß that

vanishes on sets of p-measure 0. It follows from this identification that for t in

[(/ - l)/2", i/2")

x*fn(t) = ß([0,i/2"))
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and
x*f(t) = ß([0, t)).

Now, for fixed t, let E, „ be the element of ttn that contains /. We have

\x*f(t)-x*fn(t)\<\ß\(E,,n).

It follows from the boundedness of ß that Xrmn_^a\ß\(Ef,) = 0 for all but counta-

bly many t. We thus see that

hm  x*fn = x*f   a.e.
n—»oo

for each x* in L*o(p).

Example 5 is not an anomaly. We will now show that all Pettis integrable

functions are limits in our sense of simple functions, just as all Bochner integrable

functions are norm limits of simple functions. Our theorem completely char-

acterizes Pettis integrability in terms of this convergence of simple functions. As

Phillips's example shows, this result involves much more than weak measurability.

The resulting juxtaposition of the conditions for Pettis integrability and Bochner

integrability reveals the origin of the inherent complexity of the Pettis integral.

To prepare for the proof of Theorem 6, we establish the following notation. Let

(ß, 2, p) be a finite measure space. For any partition it of ß into measurable sets

we define the operator Ew: Lx(p) -» Lx(p) by

*<+)- 2x,(-)-W*

This well-known operator maps each element of Lx(p) into its conditional expec-

tation relative to the a-field generated by it. It is easily seen that ||7iJ| < 1. If we

order the partitions by refinement, then for any \p in Lx(p) the net (Ew\p) converges

to i/> in the Lx(p) norm.

Theorem 6. Let (ß, 2, p) be a finite perfect measure space, and let f: ß -» X. Then

f is Pettis integrable if and only if there is a sequence (/„) of simple functions from ß

into X such that

(a) The set {**/„: x* E BaU(A"*), n E N) is uniformly integrable, and

(b)for each x* in X* lim^^^x*/, = x*f a.e.

Proof. Since simple functions are Pettis integrable, one direction of this is

immediate from Theorem 3. For the converse, suppose / is Pettis integrable and

define T: X* ^ Lx(p) by T(x*) = [x*f]. A brief computation shows that the

adjoint of T acts on LM( p) by means of Pettis integration: T*(tp) = {tpf dp for all tp

in Lx( p). According to Stegall's theorem the range of an indefinite Pettis integral

is relatively norm compact [3, Proposition 3J]. It follows that T* is a compact

operator [1, Theorem 18, p. 161]; hence T is also compact. For each x* in A'* the

net (E„Tx*) converges in the Lx(p) norm to Tx*, and since T is compact this

convergence is uniform on Ball(Ar*). Thus E„ converges to F in the operator norm.

Extract an increasing sequence (itn) of partitions such that limn_>œ||7i,w T — F|| = 0

and define a sequence (/„) of simple functions from ß into X by

f pf dp
/„(•)= 2 xg(-)   ,Fv ■

e<z*„ 9\E)
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Since x*f„ = E„ Tx*, we see that for each x* in X* hm^^x*/,, = x*/in the Lx(p)

norm, and this convergence is uniform for x* in Ball(X*). Thus {x*f„: x* E

Ha\\(X*), n E N) is uniformly integrable. For fixed x* in X* the sequence (x*f„) is

an L,-convergent martingale. Doob's Martingale Convergence Theorem now im-

plies that limM0Ox*/» = x*f a.e. for each x* in X*, and this completes the proof.

The nature of the convergence of (x*f„) to x*f forms a large part of the

distinction between the Bochner and Pettis integrals. It follows easily from Theo-

rem 6 that a bounded function/: ß —, X is Pettis integrable if and only if there is a

bounded sequence (/,) of simple functions such that lim<_)00x,/B = •**/ a.e. for all

x* in X*. The exceptional null set on which this convergence fails may vary with

x*. If there exists a fixed null set A such that lim^^x*/^) = x*f(u>) for all x* in

X* and for all w not in A, then it follows from the Hahn-Banach theorem that/has

separable range off A ; hence / is strongly measurable and Bochner integrable. The

distinction between the Bochner integral and the Pettis integral is thus the distinc-

tion between stationary exceptional sets and mobile exceptional sets.

Our final theorem summarizes this discussion.

Theorem 7. Let (ß, 2, p) be a finite perfect measure space and let f be a bounded

function from ß into X. Then

(a) The function f is Pettis integrable if and only if there is a bounded sequence (/„)

of simple functions from ß into X with hmn_>œjc*/1 = x*fa.e.for all x* in X*.

(b) The function f is Bochner integrable if and only if there is a null set A and a

sequence (/„) of simple functions from ß into X with lim,,^,^*/^) = x*f(ui) for all

x* in X* and for all co not in A.
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