CUT POINTS OF X AND THE HYPERSPACE OF SUBCONTINUA C(X)

TOGO NISHIURA AND CHOON-JAI RHEE

ABSTRACT. Let X be a nondegenerate metric continuum and p_0 a point with $X = X_1 \cup X_2$, $\{p_0\} = X_1 \cap X_2$, X_1 and X_2 continua. Denote by C(X), $C(X_1)$ and $C(X_2)$ the hyperspaces of nonempty subcontinua of X, X_1 and X_2 respectively.

THEOREM. C(X) is contractible if and only if $C(X_1)$ and $C(X_2)$ are contractible and either X_1 or X_2 is contractible im kleinen at p_0 (a modification of connected im kleinen at p_0).

THEOREM. Let X_1 and X_2 satisfy Kelley's condition K. Then C(X) is contractible when and only when either X_1 or X_2 is connected im kleinen at p_0 .

Examples are given.

Let X be a nondegenerate metric continuum and p_0 be a cut point of X. Denote by X_1 and X_2 subcontinua of X such that $X = X_1 \cup X_2$ and $X_1 \cap X_2 = \{p_0\}$. Each of X, X_1 and X_2 have their respective hyperspaces of nonempty subcontinua C(X), $C(X_1)$ and $C(X_2)$ endowed with the Hausdorff metric D. In the present paper, a characterization of the contractibility of C(X) is proved in terms of properties of the subcontinua X_1 and X_2 . A corollary is then proved in which a characterization of the contractibility of C(X) is established when both X_1 and X_2 have the property X of [2]. Further applications of the main characterization theorem are also given.

Throughout the paper the symbol I will be reserved for the closed interval [0, 1]. For a general reference on C(X), see [4].

1. The fibers of the cut point. By the fibers of the cut point p_0 we will mean the following closed subsets of C(X).

$$\mathcal{F} = \{ A \in C(X) | p_0 \in A \},$$

$$\mathcal{F}_i = \{ A \in C(X_i) | p_0 \in A \} \qquad (i = 1, 2).$$

1.1. PROPOSITION. \mathscr{F} and $\mathscr{F}_1 \times \mathscr{F}_2$ are homeomorphic. Hence $C(X) = C(X_1) \cup (\mathscr{F}_1 \times \mathscr{F}_2) \cup C(X_2)$ with the natural identifications.

PROOF. Let $\Phi: \mathcal{F}_1 \times \mathcal{F}_2 \to 2^X$ (2^X = space of nonempty closed subsets of X) be given by $\Phi(A_1, A_2) = A_1 \cup A_2$. Clearly, Φ is continuous and into \mathcal{F} . If $A \in \mathcal{F}$ then $A_1 = A \cap X_1$ and $A_2 = A \cap X_2$ are connected because p_0 is a cut point of X.

Received by the editors July 27, 1979 and, in revised form, May 19, 1980; presented to the Society, January 5, 1980.

AMS (MOS) subject classifications (1970). Primary 54B20; Secondary 54D05, 54E40, 54F20.

Key words and phrases. Hyperspace of subcontinua C(X), cut point, contractibility, connected im kleinen.

Hence Φ is onto \mathfrak{F} . To show Φ is one-to-one, let (A_1, A_2) and (B_1, B_2) be distinct elements of $\mathfrak{F}_1 \times \mathfrak{F}_2$. We may suppose $A_1 \neq B_1$. Since $A_1 \cap B_2 = \{p_0\}$ and $B_1 \cap A_2 = \{p_0\}$, we have $A_1 \cup A_2 \neq B_1 \cup B_2$. We now conclude Φ is a homeomorphism of $\mathfrak{F}_1 \times \mathfrak{F}_2$ onto \mathfrak{F} .

- 2. The first necesary condition. A contraction $h: C(X) \times I \to C(X)$ is called monotone if $h(A, t) \subset h(A, t')$ for $A \in C(X)$ and t < t'.
- 2.1. Proposition [2]. If C(X) is contractible then there is a monotone contraction $h: C(X) \times I \to C(X)$.

PROOF. Let \bar{h} : $C(X) \times I \to C(X)$ be a contraction. Since C(X) is arcwise connected, we may assume $\bar{h}(A, 1) = X$ for all $A \in C(X)$. For each $(A, t) \in C(X) \times I$, define $h(A, t) = \bigcup \{\bar{h}(A, t'): 0 \le t' \le t\}$. Then h has the required property and is a contraction.

2.2. THEOREM. If C(X) is contractible then so are $C(X_1)$ and $C(X_2)$.

PROOF. Define $\gamma: X \to X_i$ (i = 1 or 2) by

$$\gamma(x) = \begin{cases} x, & \text{if } x \in X_i, \\ p_0, & \text{otherwise} \end{cases}$$

and define $\bar{\gamma}$: $C(X) \to C(X_i)$ by $\bar{\gamma}(A) = \gamma[A]$ for all $A \in C(X)$. Then, $\bar{\gamma}$ is a retraction from C(X) onto $C(X_i)$. Hence, since C(X) is contractible, so is $C(X_i)$. This proof is the referee's and is somewhat different from our original proof.

- 3. Contractibility im kleinen. In order to discuss the second necessary condition we must define a notion related to connected im kleinen. (See [1] or [6] for the definition of connected im kleinen. The second reference uses the name locally connected.)
- 3.1. DEFINITION. Let Y be a metric space and $q_0 \in Y$. We say Y is contractible im kleinen at q_0 if for each $\varepsilon > 0$ there are $\delta > 0$ and continuous map h_{ε} : $Y \times I \rightarrow C(Y)$ such that
 - (1) $h_{\epsilon}(q, 0) = \{q\}$ for each $q \in Y$;
 - (2) $d(q, q_0) < \delta$ implies $q_0 \in h_{\epsilon}(q, 1)$;
 - (3) $d(q, q_0) < \delta$ and $t \in I$ imply diam $h_{\epsilon}(q, t) \leq \varepsilon$; and
 - (4) $h_{\epsilon}(q, t) \subset h_{\epsilon}(q, t')$ for $q \in Y$ and t < t'.
- 3.2. Proposition. If Y is contractible im kleinen at q_0 then Y is connected im kleinen at q_0 .
- 3.3. DEFINITION [2]. A metric space Y is said to have property K if for each $\varepsilon > 0$ there is $\delta > 0$ such that whenever $a \in Y$, $a \in A \in C(Y)$ and $b \in Y$ with $d(a, b) < \delta$ there is $B \in C(Y)$ with $b \in B$ and $D(A, B) < \varepsilon$.

It is proved in [2] that property K implies C(Y) is contractible for a continuum Y.

3.4. THEOREM. If a continuum Y has property K and is connected im kleinen at q_0 then it is contractible im kleinen at q_0 .

PROOF. As in [2], there is a continuous function $\mu: C(Y) \to I$ such that $\mu(A) = 0$ if and only if A is a one-point set and $\mu(A) < \mu(B)$ if $A \subset B$ and $A \neq B$. It is proved in [2, pp. 23-24] with the aid of property K, that the map $h: Y \times I \to C(Y)$, given by $h(q, t) = \bigcup \{A | q \in A \text{ and } \mu(A) \le t\}$, is continuous. Let $\varepsilon > 0$ be given. Then the set

$$W = \{A \in C(Y) | \exists q_1, q_2 \in A \ni d(q_1, q_0) > \varepsilon/2 \text{ and } d(q_2, q_0) < \varepsilon/4\}$$

is compact. Let $2\lambda = \min\{\mu(A)|A \in W\}$. Then $\lambda > 0$. Since Y is connected im kleinen at q_0 , there is a continuum U with q_0 as an interior point such that $\mu(U) < \lambda$. Let $\delta > 0$ be such that $d(q, q_0) < \delta$ implies $q \in U$. We may assume $\delta < \varepsilon/4$. Then for $d(q, q_0) < \delta$ we have $q \in A \in C(Y)$ and $\mu(A) < \lambda$ implies diam $A < \varepsilon$. Hence for $d(q, q_0) < \delta$ we have $q_0 \in h(q, \lambda)$ and diam $h(q, \lambda) < \varepsilon$. The proof is now easily completed.

- 3.5. Proposition. Let Y be a continuum which is contractible im kleinen at q_0 . Then for each $\varepsilon > 0$ there are $\delta > 0$ and continuous map S_{ε} : $Y \times I \rightarrow C(Y)$ such that
 - (1) $S_{\epsilon}(q, 0) = \{q\} \text{ for } q \in Y;$
 - (2) $q_0 \in S_{\epsilon}(q, 1)$ for $d(q, q_0) < \delta/2$;
 - (3) diam $S_{\epsilon}(q, t) \leq \epsilon$ for $(q, t) \in Y \times I$;
 - (4) $S_{\epsilon}(q, t) = \{q\}$ for $d(q, q_0) \geq \delta$ and $t \in I$; and
 - (5) $S_{\epsilon}(q, t) \subset S_{\epsilon}(q, t')$ for $q \in Y$ and t < t'.

PROOF. Let $\varepsilon > 0$. Then let δ and h_{ε} be as in Definition 3.1. Define $\tau: Y \to \mathbb{R}$ as the continuous function

$$\tau(q) = \begin{cases} 1, & d(q, q_0) \leq \delta/2, \\ 0, & d(q, q_0) > \delta, \\ 2\delta^{-1}(\delta - d(q, q_0)), & \delta > d(q, q_0) > \delta/2. \end{cases}$$

Define $S_{\epsilon}: Y \times I \to C(Y)$ by

$$S_{\epsilon}(q, t) = \begin{cases} h_{\epsilon}(q, t), & 0 < t < \tau(q), \\ h_{\epsilon}(q, \tau(q)), & \tau(q) < t < 1. \end{cases}$$

One verifies easily that S_{ϵ} has the required properties.

- 3.6. Proposition. Let Y be a continuum which is contractible im kleinen at q_0 and $\mathcal{G} = \{A \in C(Y) | q_0 \in A\}$ be the fiber of q_0 . Suppose $H: C(Y) \times I \to C(Y)$ is a continuous map such that H(A, 0) = A, $H(A, t) \subset H(A, t')$ for t < t' and $H(A, 1) \in \mathcal{G}$ for $A \in C(Y)$. Then for each $\varepsilon > 0$ there are $\eta > 0$ and continuous map $H_{\varepsilon}: C(Y) \times I \to C(Y)$ such that
 - (1) $0 < \eta < \varepsilon$;
 - (2) $H_{\bullet}(A, 0) = A \text{ for } A \in C(Y);$
 - (3) $H_{\epsilon}(A, t) \subset H_{\epsilon}(A, t')$ for $A \in C(Y)$ and t < t';
 - (4) $H_{\bullet}(A, 1) \in \mathcal{G}$ for $A \in C(Y)$;
 - (5) $D(H_{\epsilon}(A, t), H_{\epsilon}(A, 1 \eta)) < \epsilon \text{ for } D(A, \mathcal{G}) > 2\eta \text{ and } 1 \eta < t;$
 - (6) $H_{\bullet}(A, t) = H(A, t)$ for $D(A, \mathcal{G}) > 2\eta$ and $1 \eta > t$;

- (7) $D(H_{\varepsilon}(A, t), A) < \varepsilon$ for $D(A, \mathfrak{G}) \leq \eta$ and $t \in I$;
- (8) $D(H_{\epsilon}(A, t), H_{\epsilon}(A, \alpha(A))) < \epsilon \text{ for } \eta < D(A, \mathfrak{G}) < 2\eta \text{ and } 1 > t > \alpha(A) = [(1 \eta)]/\eta(D(A, \mathfrak{G}) \eta); \text{ and }$
- (9) $H_{\epsilon}(A, t) = H(A, t)$ for $\eta \leq D(A, \mathcal{G}) \leq 2\eta$ and $0 \leq t \leq \alpha(A) = [(1-\eta)]/\eta(D(A, \mathcal{G}) \eta)$.

PROOF. Let $\varepsilon > 0$ be given and let δ and S_{ε} be given by Proposition 3.5. The set

$$U = \{(A, t) \in C(Y) \times I | d(q_0, H(A, t)) < \delta/2\}$$

is open and contains $C(Y) \times \{1\} \cup \mathcal{G} \times I$, where \mathcal{G} is the fiber of q_0 . Let η be such that

- (i) $0 < \eta < \varepsilon$;
- (ii) $D(A, \mathcal{G}) < \eta$ implies $(A, t) \in U$ for all $t \in I$; and
- (iii) $1 2\eta \le t$ implies $(A, t) \in U$ for all $A \in C(Y)$.

Then the function

$$\alpha(A) = \begin{cases} 1 - \eta, & D(A, \mathcal{G}) > 2\eta, \\ 0, & D(A, \mathcal{G}) < \eta, \\ \frac{1 - \eta}{\eta} (D(A, \mathcal{G}) - \eta), & \eta < D(A, \mathcal{G}) < 2\eta, \end{cases}$$

is continuous and $W = \{(A, t) \in C(Y) \times I | \alpha(A) \le t \le 1\} \subset U$. For $\alpha(A) \le t \le 1$, let

$$\beta(A, t) = (t - \alpha(A))/(1 - \alpha(A))$$

and

$$H(A, \alpha(A))_t = \bigcup \{S_{\epsilon}(q, \beta(A, t)) | q \in H(A, \alpha(A))\}.$$

Then $\beta(A, t)$ and $H(A, \alpha(A))_t$ are continuous on the closed set W. Let H_{ϵ} : $C(Y) \times I \to C(Y)$ be defined by

$$H_{\varepsilon}(A, t) = \begin{cases} H(A, t), & 0 < t < \alpha(A), \\ H(A, \alpha(A))_{t}, & \alpha(A) < t < 1, \end{cases}$$

where $A \in C(Y)$. Clearly, H_{ϵ} is continuous. Conditions (1)–(9) are easily verified.

3.7. LEMMA. If C(Y) is contractible and Y is contractible im kleinen at q_0 then there is a deformation retract of C(Y) onto the fiber \mathcal{G} of q_0 .

PROOF. Let H_0 : $C(Y) \times I \to C(Y)$ be a monotone contraction of C(Y) and $0 < \varepsilon_1 < 2^{-1}$. Then there are η_1 and H_{ε_1} from Proposition 3.6. Proceeding inductively, we have sequences $\{\varepsilon_n\}$, $\{\eta_n\}$ and $\{H_{\varepsilon_n}\}$ such that $0 < \varepsilon_n < 2^{-n}$ and η_{n+1} and $H_{\varepsilon_{n+1}}$ are related to ε_n and H_{ε_n} as in Proposition 3.6. Moreover, we may assume $\eta_n > \varepsilon_{n+1}$. One easily sees that the sequence $\{H_{\varepsilon_n}\}$ converges uniformly on $C(Y) \times I$, hence its limit H is continuous. Also, it is easily verified that $H(A, 1) \in \mathcal{G}$ for $A \in C(Y)$ and H(A, t) = A for $A \in \mathcal{G}$ and $t \in I$. An added consequence is $H(A, t) \subset H(A, t')$ for t < t'.

4. The second necessary condition. We return to $X = X_1 \cup X_2$ with $X_1 \cap X_2 = \{p_0\}$ as in §§2 and 3 above. Suppose $h: C(X) \times I \to C(X)$ is a monotone contraction. Then $h(\{p_0\}, \cdot)$ maps I into $\mathfrak{T}_1 \times \mathfrak{T}_2$ and $h(\{p_0\}, 0) = (\{p_0\}, \{p_0\})$ and $h(\{p_0\}, 1) = (X_1, X_2)$. If $P_i: \mathfrak{T}_1 \times \mathfrak{T}_2 \to \mathfrak{T}_i$ (i = 1, 2) are the natural projections then the functions

$$s_i(t) = \text{diam } P_i(h(\{p_0\}, t))$$
 $(i = 1, 2)$

are continuous increasing functions with $s_i(0) = 0$ and $s_i(1) > 0$ (i = 1, 2). Let $t_i = \min\{t | s_i(t) > 0\}$ (i = 1, 2).

- 4.1. Proposition. Suppose $t_2 \le t_1$. Then for each $\varepsilon > 0$ there are $\delta > 0$ and \bar{t} such that
 - (1) $d(p, p_0) < \delta, p \in X_1$ and $0 \le t \le \overline{t}$ imply diam $h(\{p\}, t) \le \varepsilon$; and
 - (2) $d(p, p_0) < \delta$ and $p \in X_1$ imply $p_0 \in h(\{p\}, \bar{t})$.

PROOF. There is \bar{t} such that $0 < \operatorname{diam} h(\{p_0\}, \bar{t}) < \varepsilon/2$. Let $A_i = X_i \cap h(\{p_0\}, \bar{t})$ (i = 1, 2). Then $\bar{t} > t_2$ and $\operatorname{diam} A_2 > 0$. Let $\bar{p} \in A_2 \setminus \{p_0\}$ and η be a positive number smaller than $d(\bar{p}, X_1)$. From the uniform continuity of h there is $\delta > 0$ such that $d(p, p_0) < \delta$ implies $D(h(\{p\}, t), h(\{p_0\}, t)) < \min\{\eta, \varepsilon/4\}$ for $t \in I$. So, when $p \in X_1$ with $0 < d(p, p_0) < \delta$ we have $h(\{p\}, \bar{t}) \setminus X_1 \neq \emptyset$ and $h(\{p\}, \bar{t}) \setminus X_2 \neq \emptyset$. Hence $p_0 \in h(\{p\}, \bar{t})$ for $d(p, p_0) < \delta$ and $p \in X_1$ and thereby (2) is proved. Finally for $p \in X_1$, $d(p, p_0) < \delta$ and $0 < t < \bar{t}$ we have diam $h(\{p\}, t) < \dim h(\{p_0\}, t) + 2D(h(\{p\}, t), h(\{p_0\}, t)) < \dim h(\{p_0\}, \bar{t}) + \varepsilon/2 < \varepsilon$ and (1) is proved.

4.2. Proposition. If $t_2 \le t_1$ then X_1 is contractible im kleinen at p_0 .

PROOF. Let \bar{t} and δ be as in Proposition 4.1. Define $h_{\epsilon}: X_1 \times I \to C(X_1)$ by

$$h_{\epsilon}(p,t)=h(\{p\},t\bar{t})\cap X_{1}.$$

4.3. THEOREM. If C(X) is contractible then either X_1 or X_2 is contractible im kleinen at p_0 .

5. The characterization theorem.

5.1. THEOREM. C(X) is contractible if and only if $C(X_1)$ and $C(X_2)$ are both contractible and either X_1 or X_2 is contractible im kleinen at p_0 .

PROOF. We need only prove sufficiency. Suppose X_1 is contractible im kleinen at p_0 . By Lemma 3.7, there is a deformation retract h_0 : $C(X_1) \times I \to C(X_1)$ of $C(X_1)$ onto \mathfrak{F}_1 . Denote by h_1 and h_2 monotone contractions of $C(X_1)$ and $C(X_2)$. Define h: $C(X) \times I \to C(X)$ by first deforming $C(X) = C(X_1) \cup (\mathfrak{F}_1 \times \mathfrak{F}_2) \cup C(X_2)$ onto $(\mathfrak{F}_1 \times \mathfrak{F}_2) \cup C(X_2)$ by means of h_0 ; second, deforming $(\mathfrak{F}_1 \times \mathfrak{F}_2) \cup C(X_2)$ onto $(\mathfrak{F}_1 \times \{X_2\})$ by means of h_2 ; finally, deforming $(\mathfrak{F}_1 \times \{X_2\})$ to $(X_1) \times (X_2) = X$ by means of h_1 .

5.2. THEOREM. Suppose X_1 and X_2 both have property K. Then C(X) is contractible when and only when either X_1 or X_2 is connected im kleinen at p_0 .

PROOF. The theorem follows from Theorems 3.4 and 5.1.

5.3. EXAMPLE. We give the example of [2]. Let Y be the closure in the plane of $\{(u, v)|v = \sin(1/u) \text{ for some } 0 < u \le 1\}$. One can easily show Y has property K. Let X_1 and X_2 be two copies of Y and $X = X_1 \cup X_2$ with $\{p_0\} = X_1 \cap X_2$ such that neither X_1 nor X_2 is connected im kleinen at p_0 . Then C(X) is not contractible, a fact already observed by Kelley in [2].

We have the following two consequences of Theorem 5.1.

- 5.4. Proposition. If $C(X_1)$ and $C(X_2)$ are contractible and there are arbitrarily small subcontinua X_{ϵ} of X_1 whose interior relative to X_1 contains p_0 and $C(X_{\epsilon})$ are contractible, then C(X) is contractible.
- 5.5. Proposition. If $C(X_1)$ and $C(X_2)$ are contractible and X_1 has arbitrarily small contractible subcontinua X_e whose interiors relative to X_1 contains p_0 , then C(X) is contractible.
- 5.6. EXAMPLE. Let X_1 be the arc I and X_2 be a pseudo arc such that $X_1 \cap X_2 = \{p_0\}$ and $X = X_1 \cup X_2$. Then C(X) is contractible.

PROOF. By [5], $C(X_2)$ is contractible. See also [3].

6. Remark. There is a continuum Y which is connected im kleinen at q_0 but not contractible im kleinen. Let Y_n be the closure in the plane of the set $\{(u, v + 2n)|v = \sin(1/u) \text{ for some } 0 < u \le 1\}$ and let Y be the one-point compactification of $\bigcup_{n=0}^{\infty} Y_n$. Then one sees that Y is connected im kleinen at ∞ , but not contractible im kleinen at ∞ . The latter fact can be proved by using techniques from §4 and the fact that Y is not connected im kleinen at each cut point of Y whose first coordinate is zero.

REFERENCES

- 1. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.
- 2. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- 3. J. Krasinkiewicz, On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 84 (1974), 175-186.
 - 4. S. B. Nadler, Jr., Hyperspaces of sets, Dekker, New York, 1978.
- 5. C. J. Rhee, On dimension of hyperspace of a metric continuum, Bull. Soc. Roy. Sci. Liege 38 (1969), 602-604.
- 6. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, R.I., 1942.

DEPARTMENT OF MATHEMATICS, WAYNE STATE UNIVERSITY, DETROIT, MICHIGAN 48202