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A LINEAR, ALMOST PERIODIC EQUATION

WITH AN ALMOST AUTOMORPHIC SOLUTION

RUSSELL A. JOHNSON

Abstract. We construct a scalar, first order, almost periodic ODE (•) x + A(t)x

— B(t) which admits bounded solutions, but no almost periodic solutions. Using

this equation, we give an example of a two-dimensional, almost periodic system

whose projective flow admits two minimal subsets, one of which is almost automor-

phic but not almost periodic. Finally, we show that some equation in the hull of (•)

admits an almost automorphic, nonalmost periodic solution.

1. Introduction. We construct a scalar, first order, almost periodic ODE (*)

x + A(t)x = B(t), which admits bounded solutions, but no almost periodic solu-

tions. The function A(t) was constructed by Conley and Miller in [1]. Using this

equation, we give an example of a two-dimensional almost periodic system whose

projective flow (see 2.3 below) admits two minimal subsets, one of which is almost

automorphic [6] but not almost periodic. This answers in the affirmative a conjec-

ture of the author in [4]. Then, we show that some equation in the hull of (*) admits

an almost automorphic, nonalmost periodic solution. This answers questions A, H,

and I posed by Fink [2, pp. 101, 168, 173]. Finally, we note that some equation in

the hull of (*) has the following property: Every non trivial solution to the

corresponding homogeneous equation is bounded away from zero; however, the

equation itself has a bounded solution, but no almost periodic solutions. This

shows that Favard's theorem for linear inhomogeneous equations with almost

perodic coefficients need not be true when the Favard property is not satisfied on

the entire hull.

2. Results.

2.1. In §§3 and 4, we will construct a linear, nonhomogeneous differential

equation

x +A(t)x = B(t) (1)

with the following properties: (a) A(t) = lim,,,,,, An(t) and B(t) = limn^0o B„(t),

where the limits are uniform on R, and An and Bn have period 2" (« > 4). (b)

J'0 A(s) ds -» oo as t -» oo. (c) If x(t) is the solution to (1) satisfying x(0) = 0, then

x(2") = 1/5 (« > 4, n odd); also, |jc(/)| < 1 for all í G R. Thus x(t) is uniformly

bounded. Moreover, x(2") = 0 (« > 4, n even).

In the section, we prove that (1) has no almost periodic (a.p.) solutions (2.2), and

state why it answers the questions discussed in the Introduction (2.3).
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2.2. Theorem. Equation (1) admits no almost periodic solutions.

Proof. Suppose (1) has an a.p. solution x(t). Then the frequency module of x(t)

is contained in that of A. For, if not, then it is easily seen that (1) has an a.p.

solution x(t) such that x(0) ¥• x(0). However, (jc(0) - ;t(0))exp(- f0 A(s) ds) -» 0 as

t -» oo (2.1(b)), which is impossible unless the a.p. functions 3c and jc are identically

equal. So the frequency module of x is contained in that of A. Hence lim,^ x(2")

exists (2.1(a)). However, if x(t) is as in 2.1(c), then x(t) — x(t) -» 0 as / -> oo. By

2.1(c), we must have lim^«, x(22k) = 0, lim^w x(22*+1) = 1/5. We have ob-

tained a contradiction and proved Theorem 2.2.

2.3. Remarks. Consider the 2nd order ODE

(-l/2)A(t) B(t)

0 {\/2)A(t)
= D(t)x       (x G R2). (2)

Let ß be the hull of D (= the uniform closure of the set of translates of D; see

[15]). Write w0 = D G ß. It is well known that (2) induces, in a natural way, a flow

on the projective bundle 2 = ß X P1 [15]. Introduce polar coordinates (r, 0) in R2.

Since D is triangular, we may view 2 as ß X {0: 0 < 0 < it), where 0 = 0 and

0 = it are identified. Clearly ß X {0 = 0} = A/0 is a minimal subset of 2.

Now express (2) in polar coordinates. It is easily seen that cot-1 0(t) satisfies (1).

Hence the orbit closure cls[(w0, it/2) • t: t G R] c ß X (0, it) contains a minimal

set A/, which, by 3.1, cannot be an a.p. minimal set. By 6.11 of [4], Mx is an almost

automorphic (a.a.) extension [6] of ß which is not a.p. Thus the conjecture of [4] is

true.

(b) From (a) and the definition of a.a. extension [6], there is a point (w„ 0X) G

A/, such that Mx n ({<o,} X [0, it]) = {(«,, 0X)}. (Such a point is an almost automor-

phic point of Mx.) Write (to,, 0X) • t = (w, • t, 0x(t)). Then cot-1 0x(t) is an a.a.

function of t [6]. It is not a.p.; otherwise, M, would be an a.p. minimal set. It is a

solution to

x+A(t)x = B(t), (3)

where A resp. F is a limit of translates of A resp. B. So (3) is an a.p., scalar ODE

with an almost automorphic, non-a.p. solution. This answers a question of Fink [2].

For further discussion, see [3].

(c) From [5], there is an equation of the form (3) (where again A resp. F is a limit

of translates of A resp. B) such that the homogeneous equation x + A(t)x = 0

satisfies inf,|x(r)| > 0 unless x(t) = 0. (Note this is equivalent to f'Q A(s) ds < M <

oo for all t.) Such an equation (3) admits bounded solutions, but no almost periodic

solutions. It therefore has the Favard property, but does not satisfy the conclusion

of Favard's Theorem.

3. The Conley-Miller function. We first review the example of Conley and Miller

[1]. Choose numbers a„ as follows: ax = 1, a„ = a„_, if « is even; an = (4/9)(a„_1)

if n is odd (we choose the constant B of [1] to be 4/9). Hence

a„ = (2/3)"-2    («even);       a„ = (2/3)-*    («odd). (4)
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Define a continuous, 2"-periodic functions g„(t) (n > 3) as follows:

«.(') =

0, 0 < t < 2"~x,

linear, 2"_1 < f < 2"_1 + 5,

c„, 2"-, + 5 <f < 2"- Ô, (5)

linear, 2" - 6" < f < 2",

0, / = 2"       (« odd);

Here

gn(t) = 0       (« even).

5 = 1/127; (6)

cn = (5/9)2"(2/3)-3/ (2"-' - 8)       (n odd). (7)

Define Ax(t) = (2/5) -g^f); then let
n

A2(t) =Ax(t);   An(t) = A2(t) - 2 »(/)    (n > 3);   .4(f) = lim ,4„(f). (8)
,_3 "-00

Thus 4,(0 =yt„_,(0 if n is even, and v4(f) = An+l(t) = 4(f) if 0 < f < 2" for all

«.

Conley and Miller show that

J.4(i) a!s-» oo    asf->co; (9)
o

f^*-«*-S2£' "even-        do)
■'o 2(4/3)"  ',    «odd;

£f+' 4,+|(i) <& = 2"(2a„+1 - a„) = (- l/4)(4/3)"   (« even).        (11)

We need some additional facts about A(t).

3.1. Lemma. For n > 3, }'0A„(s) ds > a„t for all t > 1.

Proof. Since An is 2"-periodic, we can assume 0 < t < 2".

The statement is true if n = 3. Suppose it is true for some integer « > 3. If « is

odd, then An+X = An and a„+1 = a„, so the statement holds with « + 1 in place of

«. Suppose « is even. Then «(f) = f'QAn+x(s) ds > an+xt for t G [0, 2"]. Clearly

*(0 > a„+i' for * e I2". 2" + fi]. For 2" + 8 < f < 2n+x - 8, one has

*(') >K+i + («„ - *„+.)]' - c„+i(' - 2" -i«)

>an+xt   iît <2n+x(2"+±8)/(2" + 8).

This last expression is > 2"+1 - 5, so «(f) > a„+,f on [2", 2"+1 - 5]. Finally, if

2"+I — ô < f < 2n+1, then h(t) is bounded below by a linear function of f which is

(i) > an+xt if f = 2n+l - 5; (ii) = a„+1f if f = 2n+1. This completes the proof.

3.2. Lemma. Let Ix = [0, 2], 7, = [2*-', 2k] (k > 1). 7/« > 4, then

expí- i"' 4,(*) *) < 5 •    2     ¿   /«■ < e /* 0 < * < »)•
v    •'o / i=k+\   2
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An+M =

Proof. The statement is true if « = 4. Suppose it is true for some « > 4. If f G Ik

(1 < k < «), then exp(- f0 An(s)ds) < SS!¡*l+l 1/2' < 52J+¡+x 1/2'. Suppose f
G7„+1. Using 2.1, we have f'0A„+x(s) ds > a„+1 • 2" = (4/3)". But e-(4/3)" <

5/2"+2 for all « > 1. The lemma is proved.

3.3. Lemma. Define

A„ = exp( - Jf^ 3 ¿n(*) ds)       (n > 3). (12)

Suppose n > 4 is even. Then (l/5An + x)exp(-f'7.2.-2 An+X(s) ds) < 1/2"-1 + 1/2"

for t G [7 • 2"-2, 31 • 2"~4].

Proof. Note that

if 7 • 2"~2 < f < 29 • 2"-4 or 30 • 2""4 < f < 31 - 2"~4,

><n-4(0 - &.-3Í0 - &-i(0 - «,+ .(')

if 29 • 2""4 < f < 30 • 2"-4or31 • 2"~4 < f < 2"+1.

Observe also that, by choice of 8 and the assumption « > 4,

-195/4\"-4      /-2"+1   ,     / * _,  ^  -197/4\"-4

Let «(f) = j!j.2„-2 An+X(s) ds. If 7 • 2"~2 < f < 29 • 2"~4, then

Kt) > (a„_4 - c„_, - cB+I)(* - 7 • 2"-2) > 0.

IÍ29-2"-4 <f < 30-2"-4, then

«(f) > «(29 • 2"-4) + (a„_4 - c„_3 - c„.t - cn+x)(t - 29 • 2"~4) = V(t).

Hence «(f) > F(30 • 2"~4), which is > (-99/81X4/3)""4 by choice of 8. If 30 •

2"-4 < f < 31 • 2"-4, then «(f) > (-99/81)(4/3)"-4 also. Thus (l/5An+x)e-hW <

(l/5)exp((-96/81)(4/3)''-4) for f G [7 • 2""2, 31 • 2"~4], and this is < 1/2"-1 +

1/2" if « > 4. The proof is completed.

3.4. Lemma. Suppose n is even, « > 4. 7/31 • 2"~4 < f < 2"+1, then

JÄ-exp(~/'     ,An+Ás)ds) < tt- exp(- V        An_x(s)ds).
•>an+l V      ^7-2" + l I -"»„-I V      •/31-2""4 '

Proof. Let a(t) equal the left-hand side of the inequality, ß(t) the right-hand

side. Then a(t) = C,exp( — f'3l.2—-An_x(s) ds)exp(f'3X.T., gn+x(s) ds), where Cx is a

constant. Hence we have a(t)/ß(t) = C2 ■ exp(f'3x.2.-i gn+x(s) ds) for a constant C2.

Now, a(2n+x) = ß(2"+x) = 1/5 and gn+x(s) > 0. Hence a(t) < ß(t) if 31 • 2"~4 <

f < 2"+1, and the proof is finished.

4. The example. We turn now to our example. For n > 4, we will consider

equations

x +An(t)x = Bn(t), (14)„

where Bn is to be constructed. Let xn(t) be the solution to (14)„ with x„(0) = 0.
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Let « > 4 be even. Suppose that we have constructed a continuous function Bn(t)

such that Bn and xn have the following properties:

Bn has period 2";

x„(2") = *„(2-2)-*„(24) = 0;

xn(T-x) =-*„(25) = 1/5;

x„(3 • 2""2) = 0;

xn(t)>-Í   i        (0<f<2");
i — l   2

(15)

(16)

(17)

(18)

(19)

x„(t) < 2   ¿        (0 < t < 2*1 < k < «);
i=i   2

(20)

*„(') + ^—exp(-f'+2" An+X(s) ds) < 2   4    if 3 • 2"-2 < f < 2". (21)

By (15) and (16), xn is 2"-periodic.

We will construct a continuous function Bn+2(t) satisfying

B„+20) = Bm{t)       (0 < / < 2"); (22)

l*»+2(0 - *.(0I < 3(2/3)-3       (f G R); (23)

also, (15)—(21) will hold with « + 2 in place of n.

First, define a function Bn+X(t) as follows: Bn+X(t) = xn(t) + An+X(t)xn(t) (t G

R). Then B„+x is 2"+'-periodic. Since An+2 = An+X, we have 7?„+1(f) = xn(t) +

-W'KíO- Also, |75„+1(f) - B„(t)\ < \An+x(t) - 4,(01 < 2(2/3)"-3 for all f G R
(use (19), (20), (6), and (7)).

Next, define a 2"+ '-periodic function Bn+x(t) by

'4+iW. 0<f<7-2"-2-4,

4+i(0 + YiWb    7-2"-2-4<7-2"-2,

5"+'(f), 7 • 2"-2 < f < 2"+1.

Here, yx is a continuous, nonnegative function, supported on [7 • 2"-2 — 4, 7 •

2"~2], such that

/07'2"2 *{»*(-£'****& dr)ds = 3^-.

Since A(t) < 2 for all f, we can and will take max yx(t) < 1/5AB + , < (2/3)"~3

(see (12) and (13), and recall « > 4). Solving (14)n+1 explicitly, and using (18), we

see that

Bn+M =

xn+x(t) =

x„(t),

x„(t) + i?,(f),

0 < f < 7 • 2n-2

7-2""

-4,

4 < f < 7 • 2n-2

«»(*) + 7T1— «p(- f      4+i(*) 4,       7 • 2-2 < f < 2-',
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where 0 < i?,(f) < 1/5A„+1 < l/2"+1 (see (12) and (13)). Hence

*n+,(2"+1) = f   xn+x(t) = xn(t)   (0<f<2"); (24)

- 2   1/2' < xn+x(t) < 2   1/2'   (use (19)-(21)).
i=i /-i

Here 0 < f < 2"+1. Now, define a 2"+aperiodic function Bn+2 by

Bn+X(t),       0<f<3-2"-4,

*„+2(') =    4+i(<) - VM       3 • 2" - 4 < f < 3 • 2",

4+i(0.       3-2"<f<2"+2.

Here y2 is a nonnegative, continuous function supported on [3 ■ 2" — 4, 3 • 2"];

defining

12(0 = Jf' Y2(*)exp(- jf ' *W) «V) A,

we require that

%(3 • 2") = 5^-jT,  4,+j(') <&)•

Since /|;2;i4+2(j)aj = /2"yín(i)aj = 4(4/3)"-2 (see (10)), we can and will

assume that sup, y2(0 < (2/3)"~3, and that 0 < n2(0 < l/2"+2 for 3 • 2" - 4 < f

< 3 • 2". Solving (14)„+2 explicitly, we obtain

xn+2(') =

xn+M,       0<f<2"+1

x„(t) + -exp( - f't An+2(s) ds),       2"+' < f < 3 • 2" - 4,

*„(') + }exp( - J"V An+2(s) ds) - r,2(t),       3 ■ 2" - 4 < t < 3 ■ 2",

*„('), 3 • 2" < f < 2"

We will show that conditions (15)—(23) hold with n + 2 in place of «. By

construction of Bn+2, (15), (22), and (23) are satisfied. By (22) and the formula for

*n+2(0> (16), (17), and (18) hold. Since xn+x(t) > *„(0 on [0,2"+1], and since

ij2(0 < 1/2—2, (19) holds.

Consider (20). By (24), x„+2(t) satisfies the required condition for 1 < k < « + 1.

By Lemma 3.2, the fact that An+2 = An+X, and the assumption (20) on x„(t), we

have xn+2(t) < S?*2 1/2' for 2"+1 < f < 3 • 2". Since xn+2(t) < 27_, 1/2' <

2—,2 1/2' on [3 • 2", 2"+2], the condition of (20) holds with « + 2 in place of «.

Finally, consider (21). We must show that

xn{t) + tt— exp(- ['   A„+3(s) ds) < 2   ¿

for 7 • 2" < f < 2"+3. If 7 • 2" < f < 31 • 2"-2, this follows from Lemma 3.3 and

the assumption (20) on xn(t). Suppose that 31 • 2"-2 < t < 2"+3. Using Lemma 3.4



AN ALMOST PERIODIC EQUATION 205

and the assumption (21) on xn(t), we have

xn(t) + j7-exp(- ['   An+3(s) ds)
^n + 3 V      +1-T I

< x„(t) + -r-exp(- /'       Am+l(s) ds)
-*^n+l >      ■/31-2"-2 /

= xn(t) + —-exp - / A„+X(s) ds)
-Ai + l V      Jj.2"-2 I

-A      1 "¿?    1

,.i  2'      ff !   2'

Hence (21) holds for xn+2(t).

We can now construct the ODE promised in the Introduction. Let x4(t) be any

continuously differentiable function of period 24 = 16 satisfying (16)—(21) with

n = 4 (such a function exists; see Lemma 3.3). Define B4(t) = x4(t) — A4(t)x4(t).

Then B4 has period 24 = 16, so (15) holds with « = 4. By the preceding discussion,

we may inductively construct functions F„(0 (« > 4, « even) such that B„ and the

solution x„ to (14)„ satisfying xn(0) = 0 satisfy (15)—(23) for all even « > 4. Let

B(t) = limn^.,0 Bn(t). By (15) and (23), B is a.p. with frequency module contained

in (actually, equal to) that of A(t). Let x(t) satisfy x(0) = 0 and

x +A(t)x = B(t). (1)

Then x(t) = lim,,^ xn(t). By (19) and (20), |x(f)| < 1 for all t G R (recall each xn

is 2"-periodic); i.e., x(t) is bounded. By (16), (17), and (22), 2.1(c) holds.
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