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A PROOF OF THE BURKHOLDER THEOREM

FOR MARTINGALE TRANSFORMS

T. SHINTANI

Abstract. If g is the transform of an ¿'-bounded martingale/under a predictable

sequence v satisfying sup„|o„| < oo almost everywhere, then a proof of the conver-

gence of g is given using an approximation of / by a martingale of bounded

variation.

Let (ß, A, P) be a probability space, and Mx the space of L'-bounded

martingales / = (/„/2, . . . ) relative to a fixed increasing sequence Ax, A2, . . . of

sub-a-fields of A. Equipped with the norm ||/||, = sup„||/J|,, Mx is a Banach

space.

A martingale/, with/, = 2£_, dk, n > 1, (dk = fk - fk_x, dx = /,) is of bounded

variation if 2~_,|<4(w)| < oo for almost all <o.

Let BV = {/£ Af':/is of bounded variation}. Then, B V is dense in M ' in

M'-norm (Theorem 1 of [3, p. 166]).

The following basic convergence theorem is well known:

Theorem (Theorem 1 of [1]). Let /= (/,,/2, . . .) be an Lx-bounded martingale

and let v = (vx, v2, . . .) be a predictable sequence of random variables: vk: fl —* R is

Ak_x-measurable, k > 1, such that supjuj < oo a.e. Then the martingale transform

g = (Si. #2> • • • )> defined by g„ = 2X-i vkdk, converges a.e.

What is not so transparent is the mechanism of convergence for martingale

transforms, i.e., Burkholder transforms. Here is a proof:

Proof. By a result of Burkholder and Shintani (Theorem 1 of [3]), for / in M '

and arbitrary e > 0 there is a martingale/(e) in BV such that ||/ — /w||, < e2. Let

áe)= ¿Mñ **-A*->P2u     k>\.
k-\

Then, for almost all « E ñ,

\gn'\»)\ < 2 K(«)| |4e)(«)| < suP|t,»|- 2 |di°(«)| < »•
A:=l " k-\
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This means that the sequence { gjfXui), n > 1} converges absolutely for almost all

to. So, 7>(lim sup^ J g%> - g<«>| > e) = 0. Then

P(limsup|gm-gn|>3e)
^ m,n—»oo '

< 7>(lim sup(|gm - g%>\ + |¿M _ &| + \gM - g(«)|) > 3e)
^ m,n—»oo '

< F(limsup|gm - g^l >«) + Wlimsuplg« _ &j > e\
^  m,n—»oo * v m,n—»oo "

+ F(limsup|gW-^e)|>e)
v myn—»oo /

= 2-7>( inf (sup|gn-g<«>|)>e)

<2-P(sup|gn-g<'>|>e).

Now, by the weak L '-inequality of Burkholder, for each constant c > 0 there is a

universal constant C > 0 such that if |t>| < c uniformly then

P(sup|g„| > a) < C-a-1 • 11/111

for/ E M ' and all A > 0. For a proof, see [2].

Therefore

P( lim sup | gm - g„\ > 3e) < 2C ■ e'x ■ \\f - ß%

<2Ce   foralle>0.

Since supjüj < oo a.e., this means that {&,(«), « > 1} is a Cauchy sequence for

almost all w. Since the state space X = R is complete, limn_>oe g„(u) exists for

almost all w and belongs to X. This implies that g converges a.e. and the theorem is

proved.
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