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DISTAL HOMOMORPfflSMS OF NONMETRIC MINIMAL FLOWS

D. McMAHON AND T. S. WU

Abstract. In a recent paper, R. Ellis proved that the Furstenberg structure

theorem for distal minimal flows with metric phase space held for flows with

nonmetric phase space. In this paper the authors remove the metric constraint from

the relativized Ellis-Furstenberg structure theorem for distal homomorphisms and

for the Veech structure theorem for point-distal minimal flows.

One of the most celebrated theorems in topological dynamics is Furstenberg's

structure theorem for metric distal minimal flows: Let (X, T) be a distal minimal

transformation group with compact metric space X, then (X, T) is the inverse limit

of a family of distal minimal flows (Xn, T) such that (Xn+1, T) is an isometric

extension of (Xn, T). Motivated by this theorem, one of the main interests in

topological dynamics has been to express the structure of a minimal set as an

inverse limit of a family of minimal sets such that each extension is either distal or

proximal or weakly mixing [V]. This approach has been very fruitful and much

progress has been made in the last decade on the structure of metric minimal flows.

However one of the most fundamental questions remained unanswered until

recently: Can one drop the requirement on the metrizability of the phase space in

Furstenberg's structure theorem? In 1978, R. Ellis used an ingenious method to

provide a positive answer to the above. The basic idea of Ellis is that: Let (X, T) be

a distal minimal flow. If (X, T) cannot be expressed as an inverse limit of isometric

extensions of minimal sets, then there exists a countable subgroup H of T and a

compact metric space Y such that ( Y, H) has the same property and is a

homomorphic image of (X, H). But (X, H) is distal and therefore (Y, H) is distal,

and we have a contradiction, thus Furstenberg's structure theorem holds for

nonmetric spaces as well. At that time, McMahon and Nachman were investigating

the structure of Pi-flows and found an intrinsic characterization of such flows.

Combining this characterization with Ellis's technique, they prove the nonmetric

version of Veech's structure theorem (which is a generalization of Furstenberg's

structure theorem to point-distal metric minimal flows).

In this paper we prove a relativized, nonmetric version of Furstenberg's theorem

for distal homomorphisms of (possibly nonmetric) minimal flows. We also give an

easier proof of the nonmetric version of Veech's structure theorem. We have been

unable to prove a relativized nonmetric version of Veech's structure theorem.

Our proof stems from the following basic construction. Given 9: (X, T) —»

( Y, T) there is a countable subgroup K of T and metric minimal flows XK, YK and
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/sf-equivalent maps 9K, <j>K, \pK such that the diagram

"/»AT

Y    -+     YK

commutes, <f>K^~\y)) = *x (**O0). and^ X MQ(9)) ç Q(9K).

Note Theorem 1 and Corollary 2 are concerned with Q, S, distal points, and

closed invariant equivalence relations (and thus homomorphisms), none of which

depend on the topology on T, so we may assume without loss of generality that T

has the discrete topology; in Proposition 3 we assume that T has the discrete

topology.

Definitions and notations. In this paper we will assume that a flow (X, T) has a

compact Hausdorff phase space X acted on the right by a topological group T

(often the acting group will be understood and we will write just X in place of

(X, TJ). A continuous mapping <j> of a flow (X, T) onto a flow (Y, K) where

K Ç T is called ÄT-equivariant if <¡>(xk) = ${x)k for all k in K (when K = T, <f> is a

homomorphism). We denote the Stone-Cech compactification of T by ßT, a fixed

minimal right ideal in ßT by MT, and the set of idempotents in MT by JT.

We denote the set of closed subsets of X by 2X and give it the Hausdorff

topology, a basic neighborhood of E in 2X is {A : E Q aA and A Q aE] where a is

a uniformity on X. With this topology 2* is a compact Hausdorff space (see p. 113

of [GB] or see exercises, Chapter II, §1, 5(a); Chapter IX, §2, 6(b); and Chapter II,

§4, 11 of [B]). Now given any pseudometric, d, compatible with the topology on X

(i.e. B(x, d, e) = {y: d(x,y) < e) is open in X) for each e > 0, we can form a

uniformity on X by at = {(x, v): d(x, v) < e} and the corresponding neighborhood

of E in 2X is V = {A : E Ç {x: d(a, x) < e for some a in A} and A <Z [x: d(e, x)

< e for some e in E}}.

Define d* on 2X by

</*(/!, E) = max j max   min (d(a, e)) , max   min (d(a, e))\\.
KaeA^-eeE -I     eeE>-aeA JJ

Note the maximum and minimum exist since A and E are compact. Then one can

verify V = {A: d*(A, E) < e} and that d* is a pseudometric compatible with the

topology on 2X.

We denote the proximal relation for a flow (X, T) by P(X, T), Px or P. If

9: X -» Y is a homomorphism Ä(0) = {(*, x'): 9{x) = 0(*')} and g(0) denotes the

relativized regional proximal relation, Q(9) = {(x, x'): there exist nets (x„, x¿) in

R(9) and f„ in T with (x„, x^) -> (x, x') and (jc„, *X -► (x, *)}.

The relativized equicontinuous structure relation S(9) is the smallest closed

invariant equivalence relation such that the induced homomorphism X/S(9) —* Y

is almost periodic.

Basic construction. Suppose 9: {X, T) -» ( Y, T) is an open homomorphism be-

tween minimal flows X and Y. For any countable subgroup K = {k,}fL\ and
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continuous pseudometric d on X with max(d(x, x')) < 1, we define dK on X X X

by dK(x, x') = 2°1, 2~'d(xk¡, yk¡), and define closed ^-invariant equivalence rela-

tions R(X, K, d) and R( Y, K, d) on X and Y respectively by

R{X, K, d) = {(x, x'): dK(x, x') = 0}

and

R{Y,K,d)={(y,y'):d%{y,y')=0},

where dK is the pseudometric induced on 2X by dK and (Y, T) is identified with a

subset of (2*, T) by the homomorphism y -» 0"'( y).

Note dK{y,y') = 0 means i/j£(0_1(y), 0_1(y')) = 0 and so for each x in 0_1(y)

there exists an x' in 0"'( y') such that í/k(x, x') = 0. Let AK = X/R(X, K, d) and

y^ = Y/R(Y, K, d); let aK: X -^>AK and i/^: Y —» FÄ be the induced maps; and

define <*: A-^^x^by <¡>K(x) = (o^x), «M^*)))- Let XK = ^X). Note AK,

YK and üfx are metric (e.g. the metric on AK is given by dA(a, a') = d^x, x') where

a(x) = a and a(x') = a', and is compatible with the quotient topology. Define

9k: ^k~^ Yk by (fl, y)-*y- Note a^, t/^, 4^, and 9K are íT-equivariant. We wish to

show a correspondence between the fibers of 9 and 9K, that

Since the diagram

y    -»
fe

commutes, 9^K(y)) D «M^'i-V))- We wish to show ff^WjsOO) ç ^"'OO). To

see what this entails note that

Ok UM) = {(%<*). **(*(*))): iforM*)) = tó*). * G *}

= {(M^lMy))- dK(9(x),y) = 0}.

So we wish to show that if x G X with «/^(Öix)) = ^(y), then there eixsts an x' in

9~l(y) with a^x') = aK(x), i.e., with ¿^(x, x') = 0. But this is clear since 0 =

dK(9(x), y) = dK(9-i(9(x)), 9~\y)). Thus the fibers of 9K are images of fibers of 9.

Note also (XK, K) and ( YK, K) are flows.

We will now use this relationship between fibers to show that 9K is open.

Suppose 9K is not open at x* in XK. Then for some (open) neighborhood V of x*

the set 9K(V) does not contain a neighborhood of v* = ö^x*). Let y* be a net in

YK converging to v* with y* & 9K(V). Let y„ S Miy*) and>» be a convergent

subnet of y„; let y be its limit. Then ^(y) = y* and since 9¿(y*) = ^^"'(y))

there is an x in 0 ~'(y) D <j>Kx(x*). Then <f>¿'( F) is a neighborhood of x and

9((¡>k(V)) is a neighborhood of y since 9 is open. Soym G 0(<^'( ^)) for some m

and for some x' e 9~\ym), x' G ^( V). Then <M*') G F and <¡>K( V) 3 9K(<l>K(x'))

= \pK9(x') = V'xO'm) = y m & 0K(V); a contradiction. Thus 9K is open.

Fix some x0 in X; we will construct K so that <¡>K(x0) is an almost periodic point

and has dense orbit ^(x^-fif, and 4»^ x $K(Q{9)) ç Q(<t>x)- We will do so by

I»*
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constructing a sequence of subgroups K¡ of T with K¡ Ç Ki+l and taking K =

U K¡. We note that XK = inv lim X¡,, YK = inv lim Yr, and <j>K, \pK, 9K are

identical to the maps obtained via the inverse limit from <j>¡r, \pr, 9*. Also recall

that in an inverse limit, W = inv lim,e/ W¡, a basic open set on W is of the form

y¡~\ V) for some / and some basic open set V in W¡ where y¡: W'-» Wt. Let B¡ be a

countable basis for X^. Denote X^, Y^, etc. by X¡, Y¡, ....

Now to construct K, start with Kl = {e} where e is the identity. Given K¡, we

construct Ki+1 by adding some elements of T to £, and generating the subgroup

containing them. In order for ^(xq) to have dense orbit ^j^x^Ä" in XK, we add for

each V in B¡ some i in T such that x0/ G <j>flk( V). In order for «p^Xq) to be an

almost periodic point we add for each V in B¡ some finite subset F of T such that

X <Z <l>rl(V)F. In order for <t>K(Q(9)) ç Q(9K) to hold we add, for each V, W in B¡

with [^"'(K) X <j>r\ W)] n 0(0) ^ 0, some í in T such that for some (x, x') in

[<t>r\V) X frXW)] n R(9), we have (x/, x't) G 5(4, x0, 1/«) X B(dt, x0, 1/n).

Forming K = U ^ we see that 4^(x0) is an almost periodic point in (XK, K)

with dense orbit and <t>K(Q(9)) ç Q(9K).

We need some more observations before proving our main theorem.

(i) Suppose 9 is not proximal; let y0 = 9(x0), X0 = 9'\y¿), and x, G A'q with

(x„ x0) £ Py. Then cls((x0, x,)T) n A = 0 where A is the diagonal, A = {(x, x): x

G X). Take a pseudometric d on X such that d(x, x') = 1 for all (x, x') G

cls((x0, x,)?") and diam(A') = 1. We have (^(X]), ^^(xo)) G Px and 9K is not

proximal. In particular, no fiber of 9K is a singleton.

(ii) Consider any subgroup K of T. Let «jf G JK and wr G /r. Then for some

u G JT, uTuKu = wrw^ and there exists p G A/ such that p(uTuK) = m. So uTuKuuK

= uTuKuK = Mj-Mjf, puTuKuuK = puTuK, and thus «% = u. That is, for any Kjç- G JK

there exists w G JT with kw^ = h.

(iii) Finally note by 2.6.2 of [V], when the almost periodic points in R(9) are

dense in R(9), then Q(9) is an equivalence relation, and so 0(0) = S(9). In

particular Q{9) = S(9) if 9 is distal or if 9 is open and X has a 0-distal point (a

point x not proximal to any point in the fiber of 9 containing x).

Theorem 1. Suppose 9 is distal. Then Q(9) ¥= R(9).

Proof. Suppose not, suppose Q(9) = R(9). Take a pseudometric, d, such that

d(xQ, x'0) = 1 for some (x0, x'0) G R(9) and construct K as above so that (XK, K) is

minimal, <¡>K(9 "'(y)) = í¿'(feW) for all y in y, and <¡>K X ^(ßW) ç Q(9K).

Then since (2(#) = R(9), we have (2(0*) = R(9K). Since ^ is metric and 9K is

open, there are no 0^-distal points (see 2.1.5 of [V]). In particular take u in JT and

uK in /jf such that uuK = m and take x in X with x« = x; and consider §iA\x). Then

there exists x' with ¿(x, x') G R(9), «f^x) ^= <p*<x') and Op^x), ^-x')) G

P(XK, K). Note since 0 is distal x'u = x'. There exists p in ßri with <pjf(x/>) =

<M*)/' = <>ÁX')P = <t>Ax'P)> that is, i/^xp, x'p) = 0. But (x, x')u = (x, x'),

(x, x')uK = (x, x') is a /f-almost periodic point and (cls((x, x')K), K) is nnnimal.

So (x, x') G cls((x/>, x'p)K), and clearly this gives a contradiction since ^^x) ¥=

<pjr(x') and so ^(x, x') =£ 0.
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Corollary 2. If 9 is distal, then 9: X —» Y is an I-extension.

Proposition 3. Suppose X is a point-distal minimal flow, then X is an HPI-flow.

(Here we assume T is discrete.)

Proof. Suppose not. Then there exist minimal flows and homomorphisms

y: Xx -4l,9:IM^70O= Y where y is proximal, Q{9) = R(9), 9 is not 1-to-l, 0

is open, and Y is HPI. Let x0 be a distal point in X. Note we may assume

Xx = cls(x0, y0) T Q X X y for some y0 in Y and 0 is the projection onto the

second coordinate, by taking Xx to be the unique minimal set in A1 X Y. Let dx

and dY be pseudometrics in X and Y, and let d((x, y), (x', y')) =

ma.x{dx(x, x'), dY(y,y')} define a pseudometric on Xx. Note that if 0 is proximal,

then since it has a 0-distal point (x0, y0), 0(yo) is a singleton, and so since 0 is open,

0 is not proximal.

Now as noted above we may take a subgroup K of T so that (Xx , K) is a metric

minimal flow, 0^(0 _1(y)) = 9^\\j/K(yJ), Q(9K) — R(9K), and 9K is open, and not

1-to-l. Then by 2.1.5 of [V] no point in Xx  is a tf^-distal point.

Let v G JK and consider the homomorphism of minimal flows

(cls[(x0ü,y0t5)/i:], K) ç (Xx, K)^(XXk, K). Consider $K(x0v, y0v) G Xx¿ it is

proximal to some other point z in the same 0^-fiber. So there is some point (x, y) in

cls[(x0t>,y0t))^r] that is proximal to (x0u, y0v) in (cls[(x0t>, y0v)K], K) and has

<pK(x, y) = z (see proof of 5.22, iii, of [Eg]). So (x, x0u) G Px and (y, y0u) G Py.

Now (x0, x0v)v = (x0u, x0üt>) = (x0v, x0v) G A; so (x0, x0o) G Px and x0 = x0v

since x0 is distal. So also x = x0. Now since (^(x0t>,y0ü), <p*(x,y)) G R(9K), we

have (9(x0v,yQv), 0(x,y)) G *(»//*); that is, (y0v,y) G Ä(vV), so d^y^y) = 0.

Then there exists x' in A' so that (x', y) G X^ and d¡¿{x0, y0v), (x', y)) = 0. So

dxÁxo> x') = ° and dYK(y0v, y) = 0, and therefore d^Xç, y0v), (x0,y)) = 0. Thus

^Áxo> yo°) = 4>k(xo> y) = <i>Ax' y)> a contradiction.
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