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SPACES FOR WHICH ALL COMPACT METRIC SPACES

ARE REMAINDERS

JAMES HATZENBUHLER AND DON A. MATTSON

Abstract. Let X be a locally compact, completely regular, Hausdorff space, and

let K(X) be the lattice of compactifications of X. Conditions on K(X) and an

internal condition are obtained which characterize when X has all compact metric

spaces as remainders.

1. Introduction. Throughout this paper X will denote a noncompact, locally

compact, completely regular, Hausdorff space. A remainder of X is any aX — X,

where aX is a Hausdorff compactification of X. One of the major concerns in the

study of remainders has been the problem of characterizing when all members of a

certain class of spaces can serve as remainders for each X in another class of spaces

(cf. [11 [2], [3], [7], [8], [11], [12], etc.). Let K(X) denote the complete lattice of

compoactifications of X (see [6]). The purpose of this paper is to determine those

spaces for which all compact metric spaces are remainders. (Clearly, such spaces

must be locally compact.) An internal characterization and a characterization in

terms of K(X) are obtained.

2. Characterization. In general, notation and terminology concerning remainders

will follow that of [2]. For convenience, we shall say X has a countable remainder

whenever some aX — X is countably infinite. For aX, yX G K(X), we recall that

aX > yX if and only if there exists a continuous mapping of aX onto yX which is

the identity on X. Let ßX denote the Stone-Cech compactification of X and let A

denote the natural numbers.

Theorem 2.1. For locally compact X, the following are equivalent:

(A) There exists a chain {a„A|n G A} in K(X), where a„X — X = {a,"\i =

1, . . ., 2"} and where an + xX > anX under mappings tn+x which satisfy tn + x(a2/Lxx) =

tn+x«+X) = <Jori=l,...,2".

(B) Every compact metric space is a remainder of X.

(C) There exists a sequence of families §n of pairwise disjoint, nonempty, open

subsets of X such that for each n G A, S„ = {G,"\i = I, ... ,2"} and

(i) G%t\ u G2",+ 1 ç G/\ i = 1, . . . , 2",

(ii) Kn = X - U {G,"\i = 1, . . . , 2"} is compact,

(iii) Kn u G" is noncompact for each i = I, ... ,2".
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Proof. (A) implies (B). Take {o„A|n G A} as in (A). For each n G A, letfn be

the natural mapping of ßX — X onto a„X — X and where /„ is the identity on X

(cf. [4]). Set Up = f-\ap), i = 1, . . ., 2", V„ = U {U,"\l < i < 2"; i odd} and
wn = U {Up\l < i < 2"; i even}, for each n G A. Then Vn and W„ partition

ßX — X into disjoint, nonempty open sets. Let Xn = X u {b„, c„} be the two-point

compactification of X determined by identifying Vn and W„ to points b„ and cn,

respectively. Let pn be the natural mapping of ßX onto X„, for each n G A. Take

Y = X n(=N Xn and denote points of Y by (y„), where y„ G Xn. Embed X in T by

letting <p(x) = (yn), where y„ = x, for all n G A. Suppose (d„) G T satisfies a"n = b„

or </„ = c„, for each n G A. Our aim is to show that Cly <p(X) — <p(X) consists of

precisely such points. To this end, let irn be the projection of Y onto Xn and

suppose that G = ir~x(Gn¡) n • • • n ^(G^) is a basic neighborhood of (dn) in Y.

If a; = ôv thenp-'(G^) contains F^ and if a; = cv then w; ç p^(G„). Now, for

» > I '„+i 0/»+i = /•> so mat for ' = 1, 2,..., 2"+1, up+x ç i/£+1)/2], where [ ]

is the greatest integer function. It follows that some Uf* Ç p^ÍG^), for all /' =

1, . . . , k. Since Ufk is nonempty and X is dense in ßX, we can select w G X such

that w G p~x(Gn¡) n • • • n/»-1^). Then v(w) G G n <p(A), so that (</„) G

Cly <p(X) - tp(X).

Next, suppose (dn) G y, where each dn & X but a^ ̂  a}, for some j =£j. Then

there exist disjoint neighborhoods U and V in A' of d¡ and a}, respectively. Now

irfl(U) n «)rI(^) is a neighborhood of (dn) which contains no point of <p(X).

Similarly, if, for some /' =£j, d,, G X and a} G X} - X, then (dn) G Cly tp(A') -

œ(A). Thus, CLr (p(X) is a compactification of X whose remainder is a homeo-

morph of the (usual) Cantor set 6. It follows from a theorem of Magill [9] that any

compact metric space is a remainder of X.

(B) implies (C). Let aX be a compactification of X with remainder 6. For each

n G A, let {v4,"|/ = 1, . . ., 2"} be a collection of closed subsets of ß such that

8 = U {¿,"|¿ = 1, . . . , 2"} and ¿¿t1, u A£+x = ¿", / = 1, . . . , 2". In aX

choose disjoint open sets Hx with Ax Q Hx, for i = 1, 2. Set G,1 = H¡ n A,

/ = 1, 2. Clearly Kx = A - (G¡ u G2') is compact but #! u G,1 and Kx u G2' are

noncompact. Proceeding inductively, assume that a collection %n has been defined

as in (C). Select a pairwise disjoint family {H¡n+X\i = 1, . . . , 2"+I} of open sets in

etX, such that yi/"+1 ç ^,.',+1, / = 1, . . . , 2"+1, and set G^+_\ = H¿t, n G/* and

G2,+ 1 = //2"+1 n G". This defines Sn+1 according to (C). Hence the sequence

{§n\n G A} satisfies (C).

(C) implies (A). We utilize MagilFs construction in [7] to obtain a sequence of

compactifications {a„A|n G A} subject to (A). Accordingly, let a„X — X = {a,n\i

= I, ... ,2"}, where basic neighborhoods of each a," are sets 0 u {a"}, for 0

open in X and (K„ u G") - 0 compact.

Define mappings tn+x from an+xX onto a„X as in (A). Evidently, each f„+, is

continuous at points of X since X is locally compact. Next, let 0 U {a,"} be any

basic neighborhood of a,". Consider 0 u {a2"+1}- Si™* [(Kn+X u G¿+1) - 0] ç

[A„+1 - 0] u [(K„ u G,n) - 0], (An+1 u G2",+ 1) - 0 is a closed subset of a com-

pact set. Thus (Kn+X u G2"+1) - 0 is compact and 0 u {a2i+x} is a neighborhood
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of a2i+x in an+xX. It now follows that tn+x is continuous at a2i+x. In this manner

tn+x is demonstrated to be continuous at each point of an+xX and the sequence

{anX\n G A} satisfies (A). This complete the proof.

3. Sufficiency conditions and examples. The following is immediate from Theo-

rem 2.1.

Corollary 3.1. (A) If X contains a family {G„\n G A} of pairwise disjoint open

sets such that K = X — U {G„|n G A} ¿s compact and all K (j G„ are noncompact,

then all compact metric spaces are remainders of X.

(B) // X is the (topological) free union of a compact space and an infinite discrete

space, then all compact metric spaces are remainders of X.

The converse of 3.1(A) is false. For, if A is the closed unit square with C X {0}

deleted, then all compact metric spaces are remainders of X, but X contains no

family of open sets satisfying the requirements of 3.1(A).

Evidently, if X satisfies (A)-(C) of Theorem 2.1, then X has a countable

remainder. The converse is false. If X = W X W*, where W is the space of all

countable ordinals, then ßX — X = W* (cf. 8L and 8M of [4]). Since any compact

metric space which is a continuous image of W* must be countable or finite, it

follows from Magill's theorem [9] that (B) of 2.1 cannot hold for X. However, X

has a compactification with countable remainder since ßX — X has infinitely many

components (cf. [8]).
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