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PERIODS OF PERIODIC POINTS OF MAPS

OF THE CIRCLE WHICH HAVE A FIXED POINT

•

LOUIS BLOCK

Abstract. For a continuous map / of the circle to itself, let P(f) denote the set of

positive integers n such that / has a periodic point of (least) period n. Results are

obtained which specify those sets, which occur as P(f), for some continuous map/

of the circle to itself having a fixed point. These results extend a theorem of

Sarkovskii on maps of the interval to maps of the circle which have a fixed point.

1. Introduction. This paper extends the theorem of Sarkovskii on maps of the

interval to maps of the circle which have a fixed point.

Let R denote the real line, I a closed bounded interval on R, and S ' the circle.

Let C°(X, Y) denote the set of continuous maps from X to Y. For/ G C°(I, R) or

/ G C°(Sx, S ') let P(f) denote the set of positive integers n such that / has a

periodic point of (least) period n.

Let A denote the set of positive integers and let A denote the ordering of A:

3 A 5 A 7 A • ■ ■   A2-3A2-5A.-.  A22.3A22.5A-.-  A23A22A2A1.

The following theorem is proved in [2], [3] and [4].

Theorem (Sarkovskii). Let f G C°(I, R).IfnŒ P(f) and n A k then k G P(f).

Conversely, suppose S c A with the property that if n G S and n A k then k G S.

Then there is a map f G C°(I, I) with P(f) = S.

Note that the theorem of Sarkovskii completely specifies those subsets of A

which occur as P(f) for some / G C°(I, R). In this paper we do the same for

/ G C°(S ', S ') having a fixed point. Let A denote the ordering defined above, and

let < denote the usual ordering of A. The main result of this paper is the

following.

Theorem A. Let f G C°(S ', Sx). Suppose 1 G P(f) and n G P(f) for some

integer n > 1. Then (at least) one of the following holds.

(i) For every integer m with n < m, m G P(f).

(ii) For every integer m with n A m, m G P(f).

We remark that in [2] the periodic points and topological entropy of maps

/ G C°(SX,SX) are studied by examining separately the four cases where the degree

of / is 0, 1, -1, or of absolute value greater than 1. The results of [2] imply that

Theorem A holds in all cases except where the degree of / is -1 and n is even. The
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proof of Theorem A given here treats maps of all degrees simultaneously (including

the case left open in [2]), using ideas from [1] and [2].

Let/ G C°(SX, Sx) and suppose/has degree -1. One of the results of [2] states

that if n G P(f) and n is odd then statement (ii) (in Theorem A) must hold. Now,

suppose n G P(f) and n is even. By Theorem A, either (i) or (ii) holds. Suppose (i)

holds. Then (n + 1) G P(f). Since n + 1 is odd, the result of [2] implies that

m G P(f) for every positive integer m with (n + 1) A m. Since (n + 1) A n, (ii)

holds. Hence, we have the following.

Corollary B. Let f G C°(SX, S1) and suppose f has degree -1. If n G P(f) then

m G P(f) for every integer m with n A m.

The final result of this paper is the following.

Theorem C. Let S c A with 1 G S. Suppose that for every n G S1 with n > 1 (at

least) one of the following holds.

(i) For every integer m with n < m, m G S.

(ii) For every integer m with n A m, m G S. Then there is a map f G C°(SX, Sx)

such that P(f) = S.

The proof of Theorem C is obtained by using an example from [1] for / G

C°(SX, Sx) with P(f) = {1} u {A: G A: k > n}. This example is modified to

include an invariant interval on S ' with periodic points as specified by the theorem

of Sarkovskii. Note that the example constructed has degree one. It follows from

Corollary B and the results of [2] that this is the only possible degree.

2. Preliminary definitions and results. Let / G C°(S \ S '). Let f denote the

identity map of S ', and for any n G A define/" inductively by/" = / ° f"~ '.

Let x G S1. We say x is a fixed point of / if fix) = x. If x is a fixed point off",

for some n G A, we say x is a periodic point of /. In this case the smallest element

of (n G A: f(x) = x} is called the period of x.

We define the orbit of x to be {/"(x): n = 0, 1, 2, . . . }. If x is a periodic point

off of period n, we say the orbit of x is a periodic orbit of period n. In this case the

orbit of x contains exactly n points, each of which is a periodic point of period n.

We will use the following notation throughout this paper.

Notation. Let a G S1 and b G Sx with a ¥= b. We write [a, b], (a, b), (a, b], or

[a, b) to denote the closed, open, or half-open interval from a counterclockwise to b.

We will also use the following definition.

Definition. Let I and J be proper closed intervals on Sx and let f G C°(S ', S ').

We say I f-covers J if, for some closed interval K c /, f(K) = /.

We conclude this section by stating three lemmas from [1] which will be used in

the next section.

Lemma 1 (Lemma 1 of [1]). Let I = [a, b] be a proper closed interval on S ' and let

f G C°(SX, Sx). Suppose fia) = c and fib) = d and c =£ d. Then either I f-covers

[c, d] or I f-covers [d, c].

Lemma 2 (Lemma 2 of [1]). Let I and J be proper closed intervals on S ' such that I

f-covers J. Suppose L is a closed interval with L <z J. Then I f-covers L.
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Lemma 3 (Lemma 7 of [1]). Let f G C°(Sx, S ') and let P be a periodic orbit of

period m where m > 3. Suppose that {Mx, . . ., Mk} is a collection of closed intervals

with 2 < k < m such that

(1) for eachj G {1, . . ., k}, there are no elements of P in the interior of My

(2) If i ¥=j, M¡ and Mj have disjoint interiors.

(3) ///' G {2, . . . , A:} the endpoints of Mj are in P.

(4) // b is an endpoint of Mx then either b G P or b is a fixed point off.

(5) For eachj G {1, . . ., à: — I}, Mj f-covers MJ+X.

(6) Mx f-covers Mx and Mk f-covers Mx. Then for any positive integer n > k,

n G P(f).

3. Proof of Theorem A.

Convention. In Theorems A, and A2 in this section, we assume that f G

C°(S , S ') and f has a fixed point e. Also, we suppose that f has a periodic orbit

P = {px, . . . ,p„} of period n > 3 where P n (pk,Pk+\) = 0 for k = 1, . . . , n — 1

and  P n (p„,Pi) = 0.   Finally,   we   let   Ix = [p^pj,   I2 = [p2,p3], ...,/„_,=

[Pn-vPnl and h = IPn'Pll and Set A   =  {Ix, ... , I„}.

Theorem A,. Suppose that for each Ij G A there is some Ik G A with k ¥=j such

that Ik f-covers Ij. Then for every integer m with n < m, m G P(f).

Proof. Since the fixed point e of / must be in one of the intervals Ij, G A, we

may assume without loss of generality that e G /„. We have two cases.

Case 1. In f-covers I„.

Let Kx = In and let Ax = {Ij G A : Kx /-covers /,}. It follows from Lemmas 1 and

2 and the fact that P is a periodic orbit that A x contains at least one element V, of A

with/ t^ n. Also, since /„/-covers /„, /„ G Ax.

Suppose that Ax ^ A. Let K2 denote the union of the intervals in Ax. It follows

from Lemmas 1 and 2 that K2 is connected. Hence K2 is a proper closed interval on

Sx. LetA2 = {Ij G A: A2/-covers 7,}. Then,4, c A2.

We will show that A2¥= Ax. First suppose there are at least two distinct elements

of A not in Ax. Then there is an element of P not in K2. Since P is a periodic orbit,

it follows (using Lemmas 1 and 2) that A2=rhAx. Now suppose there is exactly one

element Is of A not in A,. By hypothesis, for some I, G A with t ¥= s, I, /-covers Is.

Since /, ¥= Is, I, G Ax. Hence Is G A2, soA2 ¥=AX.

Now, let A¡ = {Ij G A: K¡ /-covers L) and let Ki+X denote the union of the

intervals in A¡. Then as above it follows that if A¡ =£A then A¡ is a proper subset of

Ai+X. Thus, for some positive integer r with r < n, Ar = A.

We claim that for any positive integer /' with 2 < / < r, if ^ G A¡ then /„ /-covers

Ij for some /„ G A¡_x. To see this, suppose that Ij G A¡. Then since /C/-covers L,

f(D) = Ij for some closed interval D c K¡. There is a closed interval E a D such

that/(is) = Ij and/maps the interior of E to the interior of h. Hence, there are no

elements of P in the interior of E. Thus, E c Iu for some Iu G A¡_x, and the claim

is established.

Now, since Ar = A, our hypothesis implies that some element of Ar other than In

/-covers /„. Let w denote the smallest positive integer such that some element of

Aw, other than /„,/-covers /„. Let Lx denote an element of A   such that Lx ¥^ I„ and
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Lx /-covers /„. If w > 1, let L2 denote an element of Aw_x such that L2/-covers Lx.

Continuing we obtain distinct elements of A, LX,L2, ... ,LW with L¡ G Aw+X_¡ for

i = 1, . . ., w such that Lx /-covers /„ and L¡ /-covers L¡_x for i = 2, ..., w. Let

k = w + 1, and let Af, = /„, M2 = L^,, M3 = Z^-i, . .., Mk = L,. Then A: < n

and {Mi,..., Mk} is a collection of closed intervals satisfying the hypothesis of

Lemma 3. Hence, by Lemma 3, m G P(f) for every integer m > n.

Case 2. ln does not/-cover /„.

By continuity, 3x G [e,px] such that/(x) G {px,p„}. Hence, 3a G [e,px] such

that fia) G {px,p„} and, for all x G (e, a), fix) G {Pi,P„}. Similarly, 36 G [pn, e]

such that/(Z>) G {px,p„} and, for all x G (b, e), fix) G {Pi,P„}-

Suppose that fia) = p„ and fib) = px. Then /([6, a]) = [p„,Pi]. This is a con-

tradiction since /„ = [p„,px] does not /-cover itself. Hence either /(a) = p, or

/(6) = p„. Without loss of generality we may assume that fia) = px. Then (by

Lemma 2) [e,px] /-covers [e,p,].

Suppose that /(x) = p„ for some x G [e,px]. By choice of a, x G (a,p,]. By

Lemma 1, the interval [a, x] /-covers either /„ = [p„,px] or [p^pj. Since /„ does

not/-cover itself, [a, x]/-covers [px,p„]. Thus, [e,px] /-covers [p^pj. By Lemma 2,

[e,p,] /-covers Ij for every 7, G A with/ ^ n. By hypothesis Is /-covers [e,p,] for

some Is & A with s ¥^ n. Hence, the conclusion of this theorem follows from

Lemma 3 (with k = 2, M, = [e,p,], and AY2 = /,). Thus, we may assume that

fix) =£pn for all x <E[e,px].

Now, we modify the argument of Case 1, replacing A = {/,,...,/„} by A0 =

{[e,px], /„..., /„_!}, and starting with Kx = [e,px] instead of Kx = /„. We let

A¡ = {/ G ^40: A, /-covers 7} and let A,+1 denote the union of the intervals in .4,. It

follows from the previous paragraph that Ax = {[e,p,], Ix, . . ., 7,} for some posi-

tive integer t.

By hypothesis, some element of {/,, . . . , I„-X} /-covers /„. Also, since P is a

periodic orbit, if A¡ does not contain an interval which /-covers /„ then A¡ is a

proper subset of Ai+X. Hence, for some positive integer r with 1 < r < n — 1, Ar

contains an interval Is G {/„..., I„_x} such that Is /-covers /„. By Lemma 2, I,

/-covers [e,p,]. As in Case 1, we obtain a collection of closed intervals

(A/,, . . . , Mk} (here Mx = [e,px]) with 2 < k < n, satisfying the hypothesis of

Lemma 3. Hence, the conclusion of this theorem follows from Lemma 3.   Q.E.D.

Theorem A2. Suppose that for some Ij G A there does not exist Ik G A with k ¥=j

such that Ik f-covers Ij. Then for every positive integer m with n A m, m G P(f).

Proof. Let /. be as in the hypothesis and let K denote the closure of the

complement of 7, in S'. Let h: A-» 7 be a homeomorphism from K onto a closed

interval 7 on the real line.

Our hypothesis implies that there is a continuous map g: I -» 7? such that, for all

x G A, f(x) G A if and only if g(A(x)) G 7 and in this case n(/(x)) = g(h(x)).

Thus, since the restriction of / to K has a periodic orbit of period n, n G P(g). By

the theorem of Sarkovskii, m G P(g) for every positive integer m with n A m.

Hence, m G P(f) for every positive integer m with n A m.   Q.E.D.

Theorem A follows immediately from Theorems A, and A2.
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4. Proof of Theorem C.

Lemma 4. Let I = [a, b] be an interval on the real line, and let k be a positive

integer. Let S = {k} u {j G A: k A/}. There is a map g G C°(7, 7) such that

g(a) = a, g(b) = b, and P(g) = S.

Proof. Let c and d be points in I with a < c <d < b. By the theorem of

Sarkovskii, there is a continuous map g0: [c, d] -» [c, d] such that P(go) = S. There

is a unique g G C°(7, 7) such that g(a) = a, g(b) = b, g(x) = g0(x) for all x G

[c, d], and g is linear on each of the intervals [a, c], [d, 6]. Clearly P(g) = P(g¿) =

5.   Q.E.D.

Theorem C. Le/ 5 c A wir A 1 G S1. Suppose that for every n G S with n > 1 (at

least) one of the following holds:

(i) For every integer m with n < m, m G S.

(ii) For every integer m with n A m, m G S.

Then there is a map f G C°(S ', Sx) such that P(f) = S.

Proof. Let S c A which satisfies the hypothesis. Suppose that, for all n G S,

{k G A: n < k} is not a subset of S. Then for all n G 5, A G S for every integer k

with n A k. By the theorem of Sarkovskii, there is a map g G C°(7, 7) such that

P(g) = S. Hence, we can extend g to a map/ G C°(S ', S ') with P(f) = 5.

Thus, we may assume that, for some n G S, {k E. N: n < k} c S. We may

choose n such that {k G A: n < k} c S but if m < n, {A; G A: m < A:} is not a

subset of S. If n = 1 then S = N and there are maps / G C°(SX, Sx) with

P(f) = A. Hence we may assume that n > 1. Since 1 G 5, this implies n > 3.

LetPi»/^' • • • >/>/i be distinct points on Sx such that if P = {px,p2, . . . ,pn} then

(/>/>A+i) n P = 0 for i = 1, . . ., n - 1 and (p„,px) n P = 0. Let e2 G (p„,p,)

and let e, G (p„, ej.

We construct / G C°(S ', 5 ') as follows. Let /(p() = p,+, for / = 1, . . . , n - 1

and/(p„) = px. Let/(<?,) = e, and/^ = e2. For i = 1, . . ., n - 2, let/ map the

interval [p¡,pi+x] homeomorphically onto [p1+i,pI+2]. Let/map [p„-X,p„] homeo-

morphically onto [pn,px]. Also, let/ map [pn, ex] homeomorphically onto [ex,px]

and let/map [e2,px] homeomorphically onto [e2,p2].

It remains to define/ on [ex, e2\ Let T = {/ G S: i < n}. Note that 7^0 since

1 G T. There is a unique element k of T such that, for all i G T with i ¥= k, k A i.

By Lemma 4, there is a map g G C0«!*?,, e2], [e„ ej) with g(e,) = e„ g(e¿ = e2 and

¿•(S) = {A:} U {/ G A: A; A/}. Define /on [e„ <?2] by/(x) = g(x) for x G [e„ ej.

Thus we have constructed/ G C°(S \ Sx).

By construction e, and e2 are fixed points of /and {px,p2, ... ,pn} is a periodic

orbit of period n. It follows from Theorem A, that m G P(f) for every integer m

with m > n. Also, by construction, all periodic points outside the interval [*?,, e2]

have period at least n.

Thus P(f) = {/n G A: n < w} u {A:} u {m G A: k A m} = 5.    Q.E.D.
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