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PERIODS OF PERIODIC POINTS OF MAPS
OF THE CIRCLE WHICH HAVE A FIXED POINT

LOUIS BLOCK

ABSTRACT. For a continuous map f of the circle to itself, let P(f) denote the set of
positive integers n such that f has a periodic point of (least) period n. Results are
obtained which specify those sets, which occur as P(f), for some continuous map f
of the circle to itself having a fixed point. These results extend a theorem of
Sarkovskii on maps of the interval to maps of the circle which have a fixed point.

1. Introduction. This paper extends the theorem of Sarkovskii on maps of the
interval to maps of the circle which have a fixed point.

Let R denote the real line, 7 a closed bounded interval on R, and S the circle.
Let C%X, Y) denote the set of continuous maps from X to Y. For f € C%I, R) or
f € C%S', S let P(f) denote the set of positive integers n such that f has a
periodic point of (least) period n.

Let N denote the set of positive integers and let A denote the ordering of N:

3A5A7A --- A2-3A2-5A --- A22-3A2%-5A --- A22A22A2A1
The following theorem is proved in [2], [3] and [4].

THEOREM (SARKOVSKII). Let f € CO%I, R). If n € P(f) and n A k then k € P(f).
Conversely, suppose S C N with the property that if n € S and n A k then k € S.
Then there is a map f € C°, I) with P(f) = S.

Note that the theorem of Sarkovskii completely specifies those subsets of N
which occur as P(f) for some f € C%I, R). In this paper we do the same for
f € C%S!, S having a fixed point. Let A denote the ordering defined above, and
let < denote the usual ordering of N. The main result of this paper is the
following.

THEOREM A. Let f € CXS', S"'). Suppose 1 € P(f) and n € P(f) for some
integer n > 1. Then (at least) one of the following holds.

(i) For every integer m with n < m, m € P(f).

(ii) For every integer m with n A m, m € P(f).

We remark that in [2] the periodic points and topological entropy of maps
f € C%S', 8" are studied by examining separately the four cases where the degree
of fis 0, 1, —1, or of absolute value greater than 1. The results of [2] imply that
Theorem A holds in all cases except where the degree of fis —1 and n is even. The
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proof of Theorem A given here treats maps of all degrees simultaneously (including
the case left open in [2]), using ideas from [1] and [2].

Let f € C%S', S') and suppose f has degree —1. One of the results of [2] states
that if » € P(f) and n is odd then statement (ii) (in Theorem A) must hold. Now,
suppose n € P(f) and n is even. By Theorem A, either (i) or (ii) holds. Suppose (i)
holds. Then (n + 1) € P(f). Since n + 1 is odd, the result of [2] implies that
m € P(f) for every positive integer m with (n + 1) A m. Since (n + 1) A n, (ii)
holds. Hence, we have the following.

COROLLARY B. Let f € C%S"', S") and suppose f has degree —1. If n € P(f) then
m € P(f) for every integer m with n A m.

The final result of this paper is the following.

THEOREM C. Let S C N with 1 € S. Suppose that for every n € S with n > 1 (at
least) one of the following holds.

(i) For every integer m withn < m, m € S.

(ii) For every integer m with n Am, m € S. Then there is a map f € C%S', S h
such that P(f) = S.

The proof of Theorem C is obtained by using an example from [1] for f €
Cc°%s', 8" with P(f) = {1} U {k € N: k > n}. This example is modified to
include an invariant interval on S with periodic points as specified by the theorem
of Sarkovskii. Note that the example constructed has degree one. It follows from
Corollary B and the results of [2] that this is the only possible degree.

2. Preliminary definitions and results. Let f € C%S', S"). Let f° denote the
identity map of S, and for any n € N define f" inductively by f* = f o f*~\.

Let x € S'. We say x is a fixed point of f if f(x) = x. If x is a fixed point of f”,
for some n € N, we say x is a periodic point of f. In this case the smallest element
of {n € N: f"(x) = x} is called the period of x.

We define the orbit of x to be { f*(x): n =0, 1,2,...}. If x is a periodic point
of f of period n, we say the orbit of x is a periodic orbit of period n. In this case the
orbit of x contains exactly n points, each of which is a periodic point of period n.

We will use the following notation throughout this paper.

Notation. Let a € S' and b € S with a + b. We write [a, b, (a, b), (a, b}, or
[a, b) to denote the closed, open, or half-open interval from a counterclockwise to b.

We will also use the following definition.

DEFINITION. Let I and J be proper closed intervals on S' and let f € C%S', S").
We say I f-covers J if, for some closed interval K C I, f(K) = J.

We conclude this section by stating three lemmas from [1] which will be used in
the next section.

LEMMA 1 (LEMMA 1 OF [1]). Let I = [a, b)] be a proper closed interval on S* and let
f € %S, SY). Suppose f(a) = ¢ and f(b) = d and ¢ # d. Then either I f-covers
[c, d] or I f-covers [d, c].

LEMMA 2 (LEMMA 2 OF [1]). Let I and J be proper closed intervals on S* such that I
Jf-covers J. Suppose L is a closed interval with L C J. Then I f-covers L.
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LemMA 3 (LEMMA 7 OF [1]). Let f € C%S', S') and let P be a periodic orbit of
period m where m > 3. Suppose that {M,, . .., M, } is a collection of closed intervals
with 2 < k < m such that

(1) for each j € {1, . .., k}, there are no elements of P in the interior of M;.

(@) If i #j, M; and M; have disjoint interiors.

(3) Ifj € (2, ..., k} the endpoints of M; are in P.

(4) If b is an endpoint of M, then either b € P or b is a fixed point of f.

(5) For eachj € {1, ...,k — 1}, M; f-covers M, ,.

(6) M, f-covers M, and M, f-covers M,. Then for any positive integer n > k,
n € P(f).

3. Proof of Theorem A.

CONVENTION. In Theorems A, and A, in this section, we assume that f €
C%S', S") and f has a fixed point e. Also, we suppose that f has a periodic orbit
P={p,...,p,) of periodn > 3 where P N\ (py, pxs) =Bfork=1,...,n—1
and P N (p,,p)) =D. Finally, we let I, =[p,p) L=[pyps}.... L, =
[pn—l’pn]’ and In = [P,,,Pll, and set A = {Il’ et In}'

THEOREM A,. Suppose that for each I; € A there is some I, € A with k #j such
that 1 f-covers I,. Then for every integer m with n < m, m € P(f).

PrOOF. Since the fixed point e of f must be in one of the intervals 7, € 4, we
may assume without loss of generality that e € I,. We have two cases.

Case 1. I, f-covers I,

Let K, = I, and let 4, = {I; € A: K, f-covers [;}. It follows from Lemmas 1 and
2 and the fact that P is a periodic orbit that 4, contains at least one element /; of 4
with j # n. Also, since I, f-covers I, I, € A,.

Suppose that 4, # 4. Let K, denote the union of the intervals in 4,. It follows
from Lemmas 1 and 2 that X, is connected. Hence X, is a proper closed interval on
S'. LetA, = {I; € A: K, f-covers I}. Then 4, C A,.

We will show that 4, # A,. First suppose there are at least two distinct elements
of 4 not in A,. Then there is an element of P not in KX,. Since P is a periodic orbit,
it follows (using Lemmas 1 and 2) that 4, # 4,. Now suppose there is exactly one
element I, of A not in 4,. By hypothesis, for some I, € 4 with ¢ 5 s, I, f-covers I,.
Since I, # I, I, € A,. Hence I, € A,,s0 4, ¥ A,.

Now, let 4; = {I; € A: K; f-covers I;} and let K,,, denote the union of the
intervals in 4;. Then as above it follows that if 4; A4 then 4, is a proper subset of
A; ;. Thus, for some positive integer r with r < n, 4, = A.

We claim that for any positive integer i with 2 < i <r, if I; € 4, then I, f-covers
I; for some I, € A;_,. To see this, suppose that I; € 4,. Then since K; f-covers I,
A(D) = I; for some closed interval D C K;. There is a closed interval E C D such
that f(E) = I, and f maps the interior of E to the interior of ;. Hence, there are no
elements of P in the interior of E. Thus, E C I, for some I, € A4,_,, and the claim
is established.

Now, since 4, = A4, our hypothesis implies that some element of A, other than I,
f-covers I,. Let w denote the smallest positive integer such that some element of
A,,, other than I, f-covers I,. Let L, denote an element of 4,, such that L, 5 I, and
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L, f-covers I,. If w > 1, let L, denote an element of 4,,_, such that L, f-covers L,.
Continuing we obtain distinct elements of A, L,, L,, ..., L, with L, € 4, ,_, for
i=1,...,wsuch that L, f-covers I, and L, f-covers L,_, fori =2,...,w. Let
k=w+1l,andlet M\=1, M,=L,M;=1L, ,,...,M, =L, Then k <n
and {M,, ..., M,} is a collection of closed intervals satisfying the hypothesis of
Lemma 3. Hence, by Lemma 3, m € P(f) for every integer m > n.

Case 2. I, does not f-cover I,,.

By continuity, 3x € [e, p,] such that f(x) € {p,, p,}. Hence, 3a € [e, p,] such
that f(a) € {p,, p,} and, for all x € (e, a), f(x) & {p,, p,} Similarly, 3b € [p,, €]
such that f(b) € {p,, p,} and, for all x € (b, ¢), f(x) & {py, P.}-

Suppose that f(a) = p, and f(b) = p,. Then f([b, a]) = [p,, p,]. This is a con-
tradiction since I, = [p,, p;] does not f-cover itself. Hence either f(a) = p, or
f(b) = p,. Without loss of generality we may assume that f(a) = p,. Then (by
Lemma 2) [e, p,] f-covers [e, p,].

Suppose that f(x) = p, for some x € [e, p;]. By choice of a, x € (a, p,]. By
Lemma 1, the interval [a, x] f-covers either I, = [p,, p,] or [p,, p,]. Since I, does
not f-cover itself, [a, x] f-covers [ p,, p,]. Thus, [e, p,] f-covers [p,, p,]. By Lemma 2,
[e, p,] f-covers [, for every I, € A with j # n. By hypothesis I, f-covers [e, p,] for
some I, €E A with s # n. Hence, the conclusion of this theorem follows from
Lemma 3 (with k =2, M, = [e,p,], and M, = I,). Thus, we may assume that
f(x) #p, for all x € [e, p|].

Now, we modify the argument of Case 1, replacing 4 = {I,,...,1,} by 45 =
{le,pa) Iy, .. ., I,_,}, and starting with K, = [e, p,] instead of K, = I,. We let
A; = {I € Ay: K, f-covers I} and let K, , denote the union of the intervals in 4,. It
follows from the previous paragraph that 4, = {[e,p,}, I,, . . ., 1,} for some posi-
tive integer ¢.

By hypothesis, some element of {I,...,I,_,} f-covers I,. Also, since P is a
periodic orbit, if 4; does not contain an interval which f-covers I, then 4; is a
proper subset of 4, ,. Hence, for some positive integer r with 1 <r <n — 1, 4,

contains an interval I, € {I,, ..., I,_,} such that I, f-covers I,. By Lemma 2, I,
J-covers [e,p,]. As in Case 1, we obtain a collection of closed intervals
{M,, ..., M.} (here M, =[e, p,]) with 2 < k < n, satisfying the hypothesis of

Lemma 3. Hence, the conclusion of this theorem follows from Lemma 3. Q.E.D.

THEOREM A,. Suppose that for some I; € A there does not exist I, € A with k # j
such that I, f-covers I,. Then for every positive integer m with n A m, m € P(f).

PROOF. Let I, be as in the hypothesis and let K denote the closure of the
complement of ; in § !. Let h: K — I be a homeomorphism from K onto a closed
interval I on the real line.

Our hypothesis implies that there is a continuous map g: 7 — R such that, for all
x € K, f(x) € K if and only if g(h(x)) € I and in this case hA(f(x)) = g(h(x)).
Thus, since the restriction of f to K has a periodic orbit of period n, n € P(g). By
the theorem of Sarkovskii, m € P(g) for every positive integer m with n A m.
Hence, m € P(f) for every positive integer m with n A m. Q.E.D.

Theorem A follows immediately from Theorems A, and A,.
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4. Proof of Theorem C.

LeMMA 4. Let I = [a, b] be an interval on the real line, and let k be a positive
integer. Let S = {k} U {j € N: k Aj}. There is a map g € C°(I, I) such that
g(a) = a, g(b) = b, and P(g) = S.

PROOF. Let ¢ and d be points in I with a < ¢ <d < b. By the theorem of
Sarkovskii, there is a continuous map 8o [c, d] > [c, d] such that P(g,) = S. There
is a unique g € C%I, I) such that g(a) = a, g(b) = b, g(x) = go(x) for all x €
[c, d], and g is linear on each of the intervals [a, c], [d, b]. Clearly P(g) = P(g,) =
S. QE.D.

THEOREM C. Let S C N with 1 € S. Suppose that for every n € S with n > 1 (at
least) one of the following holds:

(i) For every integer m withn < m,m € S.

(ii) For every integer m withn Am,m € S.

Then there is a map f € C%S"', S") such that P(f) = S.

PROOF. Let S C N which satisfies the hypothesis. Suppose that, for all n € S,
{k € N: n <k} is not a subset of S. Then for all n € S, k € S for every integer k
with n A k. By the theorem of Sarkovskii, there is a map g € C%I, I) such that
P(g) = S. Hence, we can extend g to amap f € C%S', §') with P(f) = S.

Thus, we may assume that, for some n € S, {k € N: n <k} c S. We may
choose n such that {k € N: n <k} Cc Sbutif m <n, (K € N: m <k} is not a
subset of S. If n =1 then S = N and there are maps f € C%S', S') with
P(f) = N. Hence we may assume that n > 1. Since 1 € S, this implies n > 3.

Letp,, p,, . . . , p, be distinct points on S ' such thatif P = {p,, p,, ..., p,} then

(Psps)NP=Gfori=1...,n—1and (p,p) N P=0. Let e, €E(p,p)
and let e, € (p,, ).
We construct f € C%S', S") as follows. Let f(p) =p,,, fori=1,...,n—1

and f(p,) = p,. Let fe)) = e, and f(e;) = e,. Fori =1,...,n — 2, let f map the
interval [p;, p;., ] homeomorphically onto [, y, p;.,]. Let f map [p,,, p,] homeo-
morphically onto [p,, p,]. Also, let f map [p,, e,] homeomorphically onto [e,, p,]
and let f map [e,, p,] homeomorphically onto [e,, p,].

It remains to define f on [e,, e,]. Let T = {i € S: i < n}. Note that T # & since
1 € T. There is a unique element k of T such that, for alli € T with i #k, k A i.
By Lemma 4, there is a map g € C%([e,, ¢,], [¢;, e,]) with g(e,) = e,, g(e,) = e, and
P(g) = {k} U {j € N: k Aj}. Define f on [e,, e,] by f(x) = g(x) for x € [e,, e,].
Thus we have constructed f € C%S!, S").

By construction e, and e, are fixed points of f and {p,, p,, ..., p,} is a periodic
orbit of period n. It follows from Theorem A, that m € P(f) for every integer m
with m > n. Also, by construction, all periodic points outside the interval [e,, e,]
have period at least n.

Thus P()={mEN:n<m}u{k}u{meEeN:kAm}=S. QED.
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