PERIODS OF PERIODIC POINTS OF MAPS OF THE CIRCLE WHICH HAVE A FIXED POINT

LOUIS BLOCK

Abstract

For a continuous map f of the circle to itself, let $P(f)$ denote the set of positive integers n such that f has a periodic point of (least) period n. Results are obtained which specify those sets, which occur as $P(f)$, for some continuous map f of the circle to itself having a fixed point. These results extend a theorem of Sarkovskii on maps of the interval to maps of the circle which have a fixed point.

1. Introduction. This paper extends the theorem of Šarkovskii on maps of the interval to maps of the circle which have a fixed point.

Let R denote the real line, I a closed bounded interval on R, and S^{1} the circle. Let $C^{0}(X, Y)$ denote the set of continuous maps from X to Y. For $f \in C^{0}(I, R)$ or $f \in C^{0}\left(S^{1}, S^{1}\right)$ let $P(f)$ denote the set of positive integers n such that f has a periodic point of (least) period n.

Let N denote the set of positive integers and let Δ denote the ordering of N :
$3 \Delta 5 \Delta 7 \Delta \cdots \Delta 2 \cdot 3 \Delta 2 \cdot 5 \Delta \cdots \Delta 2^{2} \cdot 3 \Delta 2^{2} \cdot 5 \Delta \cdots \Delta 2^{3} \Delta 2^{2} \Delta 2 \Delta 1$. The following theorem is proved in [2], [3] and [4].

Theorem (ŠarkovskiI). Let $f \in C^{0}(I, R)$. If $n \in P(f)$ and $n \Delta k$ then $k \in P(f)$. Conversely, suppose $S \subset N$ with the property that if $n \in S$ and $n \Delta k$ then $k \in S$. Then there is a map $f \in C^{0}(I, I)$ with $P(f)=S$.

Note that the theorem of Šarkovskii completely specifies those subsets of N which occur as $P(f)$ for some $f \in C^{0}(I, R)$. In this paper we do the same for $f \in C^{0}\left(S^{1}, S^{1}\right)$ having a fixed point. Let Δ denote the ordering defined above, and let $<$ denote the usual ordering of N. The main result of this paper is the following.

Theorem A. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Suppose $1 \in P(f)$ and $n \in P(f)$ for some integer $n>1$. Then (at least) one of the following holds.
(i) For every integer m with $n<m, m \in P(f)$.
(ii) For every integer m with $n \Delta m, m \in P(f)$.

We remark that in [2] the periodic points and topological entropy of maps $f \in C^{0}\left(S^{1}, S^{1}\right)$ are studied by examining separately the four cases where the degree of f is $0,1,-1$, or of absolute value greater than 1 . The results of [2] imply that Theorem A holds in all cases except where the degree of f is -1 and n is even. The

[^0]proof of Theorem A given here treats maps of all degrees simultaneously (including the case left open in [2]), using ideas from [1] and [2].

Let $f \in C^{0}\left(S^{1}, S^{1}\right)$ and suppose f has degree -1. One of the results of [2] states that if $n \in P(f)$ and n is odd then statement (ii) (in Theorem A) must hold. Now, suppose $n \in P(f)$ and n is even. By Theorem A, either (i) or (ii) holds. Suppose (i) holds. Then $(n+1) \in P(f)$. Since $n+1$ is odd, the result of [2] implies that $m \in P(f)$ for every positive integer m with $(n+1) \Delta m$. Since $(n+1) \Delta n$, (ii) holds. Hence, we have the following.

Corollary B. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$ and suppose f has degree -1 . If $n \in P(f)$ then $m \in P(f)$ for every integer m with $n \Delta m$.

The final result of this paper is the following.
Theorem C. Let $S \subset N$ with $1 \in S$. Suppose that for every $n \in S$ with $n>1$ (at least) one of the following holds.
(i) For every integer m with $n<m, m \in S$.
(ii) For every integer m with $n \Delta m, m \in S$. Then there is a map $f \in C^{0}\left(S^{1}, S^{1}\right)$ such that $P(f)=S$.

The proof of Theorem C is obtained by using an example from [1] for $f \in$ $C^{0}\left(S^{1}, S^{1}\right)$ with $P(f)=\{1\} \cup\{k \in N: k \geqslant n\}$. This example is modified to include an invariant interval on S^{1} with periodic points as specified by the theorem of Šarkovskii. Note that the example constructed has degree one. It follows from Corollary B and the results of [2] that this is the only possible degree.
2. Preliminary definitions and results. Let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Let f^{0} denote the identity map of S^{1}, and for any $n \in N$ define f^{n} inductively by $f^{n}=f \circ f^{n-1}$.

Let $x \in S^{1}$. We say x is a fixed point of f if $f(x)=x$. If x is a fixed point of f^{n}, for some $n \in N$, we say x is a periodic point of f. In this case the smallest element of $\left\{n \in N: f^{n}(x)=x\right\}$ is called the period of x.

We define the orbit of x to be $\left\{f^{n}(x): n=0,1,2, \ldots\right\}$. If x is a periodic point of f of period n, we say the orbit of x is a periodic orbit of period n. In this case the orbit of x contains exactly n points, each of which is a periodic point of period n.

We will use the following notation throughout this paper.
Notation. Let $a \in S^{1}$ and $b \in S^{1}$ with $a \neq b$. We write $[a, b],(a, b),(a, b]$, or $[a, b)$ to denote the closed, open, or half-open interval from a counterclockwise to b.

We will also use the following definition.
Definition. Let I and J be proper closed intervals on S^{1} and let $f \in C^{0}\left(S^{1}, S^{1}\right)$. We say I f-covers J if, for some closed interval $K \subset I, f(K)=J$.

We conclude this section by stating three lemmas from [1] which will be used in the next section.

Lemma 1 (Lemma 1 of [1]). Let $I=[a, b]$ be a proper closed interval on S^{1} and let $f \in C^{0}\left(S^{1}, S^{1}\right)$. Suppose $f(a)=c$ and $f(b)=d$ and $c \neq d$. Then either $I f$-covers $[c, d]$ or I f-covers $[d, c]$.

Lemma 2 (Lemma 2 of [1]). Let I and J be proper closed intervals on S^{1} such that I f-covers J. Suppose L is a closed interval with $L \subset J$. Then If-covers L.

Lemma 3 (Lemma 7 of [1]). Let $f \in C^{0}\left(S^{1}, S^{1}\right)$ and let P be a periodic orbit of period m where $m \geqslant 3$. Suppose that $\left\{M_{1}, \ldots, M_{k}\right\}$ is a collection of closed intervals with $2<k<m$ such that
(1) for each $j \in\{1, \ldots, k\}$, there are no elements of P in the interior of M_{j}.
(2) If $i \neq j, M_{i}$ and M_{j} have disjoint interiors.
(3) If $j \in\{2, \ldots, k\}$ the endpoints of M_{j} are in P.
(4) If b is an endpoint of M_{1} then either $b \in P$ or b is a fixed point of f.
(5) For each $j \in\{1, \ldots, k-1\}, M_{j} f$-covers M_{j+1}.
(6) M_{1} f-covers M_{1} and M_{k} f-covers M_{1}. Then for any positive integer $n>k$, $n \in P(f)$.

3. Proof of Theorem A.

Convention. In Theorems A_{1} and A_{2} in this section, we assume that $f \in$ $C^{0}\left(S^{1}, S^{1}\right)$ and f has a fixed point e. Also, we suppose that f has a periodic orbit $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of period $n \geqslant 3$ where $P \cap\left(p_{k}, p_{k+1}\right)=\varnothing$ for $k=1, \ldots, n-1$ and $P \cap\left(p_{n}, p_{1}\right)=\varnothing$. Finally, we let $I_{1}=\left[p_{1}, p_{2}\right], I_{2}=\left[p_{2}, p_{3}\right], \ldots, I_{n-1}=$ $\left[p_{n-1}, p_{n}\right]$, and $I_{n}=\left[p_{n}, p_{1}\right]$, and set $A=\left\{I_{1}, \ldots, I_{n}\right\}$.

Theorem A_{1}. Suppose that for each $I_{j} \in A$ there is some $I_{k} \in A$ with $k \neq j$ such that $I_{k} f$-covers I_{j}. Then for every integer m with $n<m, m \in P(f)$.

Proof. Since the fixed point e of f must be in one of the intervals $I_{j} \in A$, we may assume without loss of generality that $e \in I_{n}$. We have two cases.

Case 1. $I_{n} f$-covers I_{n}.
Let $K_{1}=I_{n}$ and let $A_{1}=\left\{I_{j} \in A: K_{1} f\right.$-covers $\left.I_{j}\right\}$. It follows from Lemmas 1 and 2 and the fact that P is a periodic orbit that A_{1} contains at least one element I_{j} of A with $j \neq n$. Also, since $I_{n} f$-covers $I_{n}, I_{n} \in A_{1}$.

Suppose that $A_{1} \neq A$. Let K_{2} denote the union of the intervals in A_{1}. It follows from Lemmas 1 and 2 that K_{2} is connected. Hence K_{2} is a proper closed interval on S^{1}. Let $A_{2}=\left\{I_{j} \in A: K_{2} f\right.$-covers $\left.I_{j}\right\}$. Then $A_{1} \subset A_{2}$.

We will show that $A_{2} \neq A_{1}$. First suppose there are at least two distinct elements of A not in A_{1}. Then there is an element of P not in K_{2}. Since P is a periodic orbit, it follows (using Lemmas 1 and 2) that $A_{2} \neq A_{1}$. Now suppose there is exactly one element I_{s} of A not in A_{1}. By hypothesis, for some $I_{t} \in A$ with $t \neq s, I_{t} f$-covers I_{s}. Since $I_{t} \neq I_{s}, I_{t} \in A_{1}$. Hence $I_{s} \in A_{2}$, so $A_{2} \neq A_{1}$.

Now, let $A_{i}=\left\{I_{j} \in A: K_{i} f\right.$-covers $\left.I_{j}\right\}$ and let K_{i+1} denote the union of the intervals in A_{i}. Then as above it follows that if $A_{i} \neq A$ then A_{i} is a proper subset of A_{i+1}. Thus, for some positive integer r with $r<n, A_{r}=A$.

We claim that for any positive integer i with $2 \leqslant i \leqslant r$, if $I_{j} \in A_{i}$ then $I_{u} f$-covers I_{j} for some $I_{u} \in A_{i-1}$. To see this, suppose that $I_{j} \in A_{i}$. Then since $K_{i} f$-covers I_{j}, $f(D)=I_{j}$ for some closed interval $D \subset K_{i}$. There is a closed interval $E \subset D$ such that $f(E)=I_{j}$ and f maps the interior of E to the interior of I_{j}. Hence, there are no elements of P in the interior of E. Thus, $E \subset I_{u}$ for some $I_{u} \in A_{i-1}$, and the claim is established.
Now, since $A_{r}=A$, our hypothesis implies that some element of A_{r} other than I_{n} f-covers I_{n}. Let w denote the smallest positive integer such that some element of A_{w}, other than I_{n}, f-covers I_{n}. Let L_{1} denote an element of A_{w} such that $L_{1} \neq I_{n}$ and
$L_{1} f$-covers I_{n}. If $w>1$, let L_{2} denote an element of A_{w-1} such that $L_{2} f$-covers L_{1}. Continuing we obtain distinct elements of $A, L_{1}, L_{2}, \ldots, L_{w}$ with $L_{i} \in A_{w+1-i}$ for $i=1, \ldots, w$ such that $L_{1} f$-covers I_{n} and $L_{i} f$-covers L_{i-1} for $i=2, \ldots, w$. Let $k=w+1$, and let $M_{1}=I_{n}, M_{2}=L_{w}, M_{3}=L_{w-1}, \ldots, M_{k}=L_{1}$. Then $k \leqslant n$ and $\left\{M_{1}, \ldots, M_{k}\right\}$ is a collection of closed intervals satisfying the hypothesis of Lemma 3. Hence, by Lemma 3, $m \in P(f)$ for every integer $m>n$.

Case 2. I_{n} does not f-cover I_{n}.
By continuity, $\exists x \in\left[e, p_{1}\right]$ such that $f(x) \in\left\{p_{1}, p_{n}\right\}$. Hence, $\exists a \in\left[e, p_{1}\right]$ such that $f(a) \in\left\{p_{1}, p_{n}\right\}$ and, for all $x \in(e, a), f(x) \notin\left\{p_{1}, p_{n}\right\}$. Similarly, $\exists b \in\left[p_{n}, e\right]$ such that $f(b) \in\left\{p_{1}, p_{n}\right\}$ and, for all $x \in(b, e), f(x) \notin\left\{p_{1}, p_{n}\right\}$.

Suppose that $f(a)=p_{n}$ and $f(b)=p_{1}$. Then $f([b, a])=\left[p_{n}, p_{1}\right]$. This is a contradiction since $I_{n}=\left[p_{n}, p_{1}\right]$ does not f-cover itself. Hence either $f(a)=p_{1}$ or $f(b)=p_{n}$. Without loss of generality we may assume that $f(a)=p_{1}$. Then (by Lemma 2) $\left[e, p_{1}\right] f$-covers [$\left.e, p_{1}\right]$.

Suppose that $f(x)=p_{n}$ for some $x \in\left[e, p_{1}\right]$. By choice of $a, x \in\left(a, p_{1}\right]$. By Lemma 1, the interval $[a, x] f$-covers either $I_{n}=\left[p_{n}, p_{1}\right]$ or $\left[p_{1}, p_{n}\right]$. Since I_{n} does not f-cover itself, $[a, x] f$-covers $\left[p_{1}, p_{n}\right]$. Thus, $\left[e, p_{1}\right] f$-covers $\left[p_{1}, p_{n}\right]$. By Lemma 2, [e, p_{1}] f-covers I_{j} for every $I_{j} \in A$ with $j \neq n$. By hypothesis $I_{s} f$-covers [$\left.e, p_{1}\right]$ for some $I_{s} \in A$ with $s \neq n$. Hence, the conclusion of this theorem follows from Lemma 3 (with $k=2, M_{1}=\left[e, p_{1}\right]$, and $M_{2}=I_{s}$). Thus, we may assume that $f(x) \neq p_{n}$ for all $x \in\left[e, p_{1}\right]$.

Now, we modify the argument of Case 1 , replacing $A=\left\{I_{1}, \ldots, I_{n}\right\}$ by $A_{0}=$ $\left\{\left[e, p_{1}\right], I_{1}, \ldots, I_{n-1}\right\}$, and starting with $K_{1}=\left[e, p_{1}\right]$ instead of $K_{1}=I_{n}$. We let $A_{i}=\left\{I \in A_{0}: K_{i} f\right.$-covers $\left.I\right\}$ and let K_{i+1} denote the union of the intervals in A_{i}. It follows from the previous paragraph that $A_{1}=\left\{\left[e, p_{1}\right], I_{1}, \ldots, I_{t}\right\}$ for some positive integer t.

By hypothesis, some element of $\left\{I_{1}, \ldots, I_{n-1}\right\} f$-covers I_{n}. Also, since P is a periodic orbit, if A_{i} does not contain an interval which f-covers I_{n} then A_{i} is a proper subset of A_{i+1}. Hence, for some positive integer r with $1 \leqslant r \leqslant n-1, A_{r}$ contains an interval $I_{s} \in\left\{I_{1}, \ldots, I_{n-1}\right\}$ such that $I_{s} f$-covers I_{n}. By Lemma $2, I_{s}$ f-covers $\left[e, p_{1}\right]$. As in Case 1 , we obtain a collection of closed intervals $\left\{M_{1}, \ldots, M_{k}\right\}$ (here $M_{1}=\left[e, p_{1}\right]$) with $2 \leqslant k \leqslant n$, satisfying the hypothesis of Lemma 3. Hence, the conclusion of this theorem follows from Lemma 3. Q.E.D.

Theorem A_{2}. Suppose that for some $I_{j} \in A$ there does not exist $I_{k} \in A$ with $k \neq j$ such that $I_{k} f$-covers I_{j}. Then for every positive integer m with $n \Delta m, m \in P(f)$.

Proof. Let I_{j} be as in the hypothesis and let K denote the closure of the complement of I_{j} in S^{1}. Let $h: K \rightarrow I$ be a homeomorphism from K onto a closed interval I on the real line.

Our hypothesis implies that there is a continuous map $g: I \rightarrow R$ such that, for all $x \in K, f(x) \in K$ if and only if $g(h(x)) \in I$ and in this case $h(f(x))=g(h(x))$. Thus, since the restriction of f to K has a periodic orbit of period $n, n \in P(g)$. By the theorem of Šarkovskii, $m \in P(g)$ for every positive integer m with $n \Delta m$. Hence, $m \in P(f)$ for every positive integer m with $n \Delta m$. Q.E.D.

Theorem A follows immediately from Theorems \mathbf{A}_{1} and $\mathbf{A}_{\mathbf{2}}$.

4. Proof of Theorem C.

Lemma 4. Let $I=[a, b]$ be an interval on the real line, and let k be a positive integer. Let $S=\{k\} \cup\{j \in N: k \Delta j\}$. There is a map $g \in C^{0}(I, I)$ such that $g(a)=a, g(b)=b$, and $P(g)=S$.

Proof. Let c and d be points in I with $a<c<d<b$. By the theorem of Šarkovskii, there is a continuous map $g_{0}:[c, d] \rightarrow[c, d]$ such that $P\left(g_{0}\right)=S$. There is a unique $g \in C^{0}(I, I)$ such that $g(a)=a, g(b)=b, g(x)=g_{0}(x)$ for all $x \in$ $[c, d]$, and g is linear on each of the intervals $[a, c],[d, b]$. Clearly $P(g)=P\left(g_{0}\right)=$ S. Q.E.D.

Theorem C. Let $S \subset N$ with $1 \in S$. Suppose that for every $n \in S$ with $n>1$ (at least) one of the following holds:
(i) For every integer m with $n<m, m \in S$.
(ii) For every integer m with $n \Delta m, m \in S$.

Then there is a map $f \in C^{0}\left(S^{1}, S^{1}\right)$ such that $P(f)=S$.

Proof. Let $S \subset N$ which satisfies the hypothesis. Suppose that, for all $n \in S$, $\{k \in N: n<k\}$ is not a subset of S. Then for all $n \in S, k \in S$ for every integer k with $n \Delta k$. By the theorem of Šarkovskii, there is a map $g \in C^{0}(I, I)$ such that $P(g)=S$. Hence, we can extend g to a map $f \in C^{0}\left(S^{1}, S^{1}\right)$ with $P(f)=S$.

Thus, we may assume that, for some $n \in S,\{k \in N: n<k\} \subset S$. We may choose n such that $\{k \in N: n \leqslant k\} \subset S$ but if $m<n,\{k \in N: m<k\}$ is not a subset of S. If $n=1$ then $S=N$ and there are maps $f \in C^{0}\left(S^{1}, S^{1}\right)$ with $P(f)=N$. Hence we may assume that $n>1$. Since $1 \in S$, this implies $n>3$.
Let $p_{1}, p_{2}, \ldots, p_{n}$ be distinct points on S^{1} such that if $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ then $\left(p_{i}, p_{i+1}\right) \cap P=\varnothing$ for $i=1, \ldots, n-1$ and $\left(p_{n}, p_{1}\right) \cap P=\varnothing$. Let $e_{2} \in\left(p_{n}, p_{1}\right)$ and let $e_{1} \in\left(p_{n}, e_{2}\right)$.

We construct $f \in C^{0}\left(S^{1}, S^{1}\right)$ as follows. Let $f\left(p_{i}\right)=p_{i+1}$ for $i=1, \ldots, n-1$ and $f\left(p_{n}\right)=p_{1}$. Let $f\left(e_{1}\right)=e_{1}$ and $f\left(e_{2}\right)=e_{2}$. For $i=1, \ldots, n-2$, let f map the interval $\left[p_{i}, p_{i+1}\right]$ homeomorphically onto $\left[p_{i+1}, p_{i+2}\right]$. Let f map $\left[p_{n-1}, p_{n}\right]$ homeomorphically onto [p_{n}, p_{1}]. Also, let f map [p_{n}, e_{1}] homeomorphically onto [e_{1}, p_{1}] and let f map $\left[e_{2}, p_{1}\right]$ homeomorphically onto $\left[e_{2}, p_{2}\right]$.

It remains to define f on $\left[e_{1}, e_{2}\right]$. Let $T=\{i \in S: i<n\}$. Note that $T \neq \varnothing$ since $l \in T$. There is a unique element k of T such that, for all $i \in T$ with $i \neq k, k \Delta i$. By Lemma 4, there is a map $g \in C^{0}\left(\left[e_{1}, e_{2}\right],\left[e_{1}, e_{2}\right]\right)$ with $g\left(e_{1}\right)=e_{1}, g\left(e_{2}\right)=e_{2}$ and $P(g)=\{k\} \cup\{j \in N: k \Delta j\}$. Define f on $\left[e_{1}, e_{2}\right]$ by $f(x)=g(x)$ for $x \in\left[e_{1}, e_{2}\right]$. Thus we have constructed $f \in C^{0}\left(S^{1}, S^{1}\right)$.

By construction e_{1} and e_{2} are fixed points of f and $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is a periodic orbit of period n. It follows from Theorem A_{1} that $m \in P(f)$ for every integer m with $m \geqslant n$. Also, by construction, all periodic points outside the interval [e_{1}, e_{2}] have period at least n.

Thus $P(f)=\{m \in N: n \leqslant m\} \cup\{k\} \cup\{m \in N: k \Delta m\}=S$. Q.E.D.

References

1. L. Block, Periodic orbits of continuous mappings of the circle, Trans. Amer. Math. Soc. 260 (1980), 553-562.
2. L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy of one dimensional maps, Global Theory of Dynamical Systems, Proceedings (Northwestern, 1979), Lecture Notes in Math., vol. 819, Springer-Verlag, Berlin and New York, 1980, pp. 18-34.
3. A. N. S̆Sarkovskii, Coexistence of cycles of a continuous map of a line into itself, Ukrain. Mat. $\grave{\mathbf{Z}} .16$ (1964), 61-71.
4. P. Stefan, A theorem of Sarkooskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.

Department of Mathematics, University of Florida, Gainesville, Florida 32611

[^0]: Received by the editors May 21, 1980 and, in revised form, October 21, 1980; presented to the Society, January 7, 1981.

 1980 Mathematics Subject Classification. Primary 54H20.

