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ON SOME EMBEDDING THEOREMS FOR

INVERSE SEMIGROUPS

L. O'CARROLL

Abstract. A semilattice decomposition of an inverse semigroup has good internal

mapping properties. These are used to give natural proofs of some embedding

theorems, which were originally proved in a rather artificial way.

The reader is referred to [1] for the basic theory of inverse semigroups.

In an earlier paper [3] we proved the following embedding result:

(1) An E-unitary inverse semigroup is isomorphic to an inverse subsemigroup of

a semidirect product of a semilattice and a group.

The class of over-semigroups mentioned in (1) will be denoted by 6,. The proof

of (1) used McAlister's P-theorem [2]. Later, in [4], we generalised the TMheory to

arbitrary inverse semigroups and proved a general embedding theorem. This result

was then used in [6] to prove the following generalisation of (1):

(2) A strongly 7s-reflexive inverse semigroup (i.e. one which is a semilattice of

Ti-unitary inverse semigroups) is embedded in a strong semilattice of inverse

semigroups each of which is a member of <2j.

The class of over-semigroups mentioned in (2) will be denoted by C2.

Finally, in [7], (2) was used to prove the following result:

(3) An inverse semigroup is strongly Ts-reflexive (if and) only if it is a subdirect

product of Ti-unitary inverse semigroups with zero added possibly.

Now a member of C,, with zero added possibly, is a member of ß2 in a rather

trivial way. Moreover, it is relatively easy to see that C2 is closed under arbitrary

direct products. From this it follows that not only can (3) be deduced from (2), but

that (2) can be deduced from a combination of (1) and (3).

The proof of (1) in [3], which is based on the original 'external' or 'abstract'

TMheorem [2], involves the intuitively plausible idea of suitably completing the

semilattice component of a TMriple so that the group component can act on it

without constraint (see [3] for details). Meanwhile, Schein [9] had given a succinct

and conceptually clear proof of the TMheorem, which, as we shall see, gives (1) as

an almost immediate byproduct. In [5] we showed that Schein's 'internal' approach

could be successfully adapted to give the generalized P-theory and to prove the

generalised embedding theorem.

In contrast to this near ideal state of affairs for the Ti-unitary case, the general

embedding theorem (and so its consequences (2) and (3)), whether in 'external' or
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'internal' form, has always seemed rather mysterious. The proof proceeds by blind

generalisation of the Ti-unitary case, and all that can be said in its favour is that it

works and has useful consequences.

In a recent paper [8], it was noted that a semilattice decomposition of an inverse

semigroup has certain good internal mapping properties. (In fact it was shown that

more general M6D -saturated unions" have these good properties, and all that follows

below could be generalised to ^-saturated unions and the L-semigroups of [5]; for

the sake of explicitness we confine ourselves to semilattice decompositions and

Ti-unitary inverse semigroups so as to apply ourselves directly to (2) and (3).) We

develop this approach here so as to give what we hope is a conceptually clear,

internal, and relatively concrete proof of an amalgam of (1) and (3). In view of our

previous remarks, this will then put (2) on an equally satisfactory footing.

It turns out that once we have set things in the right perspective, and defined the

appropriate maps, there is very little new in the way of proof needed. The algebra

required is already contained in the proof of [9, Lemma 2] in immanent form.

To get down to details, let U = U{ Ux\ X G A} be a semilattice decomposition

of an inverse semigroup U. Choose a particular element \ G A, and denote U^ by

S = S(Ao). Let R = R(\0) = U{f/A: A > A,,}; note that S is an ideal of T?.

Suppose furthermore that S is Ti-unitary. Let Ti denote the semilattice of idempo-

tents of S, let G denote the maximal group homomorphic image of S, and let <p:

S^G be the canonical homomorphism. From [8] we see that <f> lifts to a

homomorphism from R to G, which we shall also denote by <p. Let P denote the

semilattice of subsets of Ti X G, under intersection. Following [9], while using

slightly different notation, we note that the natural action of G on £ X G from the

left (where g ■ (e, h) = (e, gh)) extends to a natural action of G on P by automor-

phisms (from the left). Moreover, the map a: s -+(s~^s, s<¡>) from 5 to £ X G is

injective and extends to an injection of the semilattice of subsets of S (under

intersection) into P; this map will also be denoted by a. The results of [9] can be

interpreted as stating that the map tp = xp(\): s h» ((sS)a, s<p) is an isomorphism

from S onto an inverse subsemigroup of V = F(Aq), where V denotes the semidi-

rect product of the semilattice P with the group G. (This yields (1) immediately.)

We now show that \p, as well as <f>, has a lifting from S to R.

Theorem. The injective homomorphism ¡p: S —» V lifts to a homomorphism x =

X(A0): T? —» V, where x is defined by the rule

rX = ((rS)a, r<¡>),        r G R.

Remarks. Since rS Ç S for each r G Tí, the definition of x makes sense. By way

of motivation note first of all that x|S = ip. Next, for r G R, rS = rr~lS, since S is

an ideal of R, and (rr'lS)a is the union of {(rr~leS)a: e G Ti}; moreover, {rr~le:

e G Ti} is the set of lower bounds for rr'1 in S. Hence (rS)a = (rr~lS)a is the least

upper bound in P for the images in P of the copies rr'leS of these lower bounds

rr e, e G E; thus (rS)a is a good 'deformation' of rr~l. Alternatively, (rS)ct is the

image under a of the right ideal generated (in S) by these lower bounds, and the

statement of [5, Theorem 3]-here we need only the case where S is Ti-unitary i.e.
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the T of [5, Theorem 3] is a group-shows the crucial rôle played by right ideals in

building up a suitably large completion of Ts so as to yield the desired embedding.

Proof of Theorem. Since S is an ideal of R, the definition of x makes sense,

and x|S = 4>- Again, in the light of S being an ideal of R, the latter half of the

proof of [9, Lemma 2] actually shows that (sS)a n (s<i>) ■ (tS)a = (stS)a, where s,

t now come from T?. (In the original proof, s and t he in S-of course there is no

mention of an T?-the action of <J> is denoted by a bar, and the action of a is denoted

by a hat. Note that there are two obvious minor misprints on line 1 of p. 187 there.)

It follows almost immediately that x is a homomorphism.

We can now proceed as usual. Suppose that S(X^) is Ti-unitary, for each A„ G A.

Since R(X0) is a cone in U, x(\>) extends to a homomorphism of U into I^Aq) with

zero added possibly, where the elements of the complement of T?(Ao)-if any-are

sent to zero. As Aq runs through A, it is clear that these extended homomorphisms

separate the elements of U, since their restrictions ^(Aq) are injective. Hence U is

embedded in the direct product of the VQ^) with zero added possibly, and (2) and

(3) follow.
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