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NORMING NIL ALGEBRAS

H. G. DALES

Abstract. A commutative nil algebra with countable basis is normable, but a

commutative nilpotent algebra is not necessarily normable.

Let A be a commutative algebra over the complex field, C. We say that A is

normable if there is an algebra norm on A, or, equivalently, if A can be embedded

in a normed algebra. A deep recent theorem of Esterle [3] shows that, if the

continuum hypothesis holds, then each integral domain without identity, of cardi-

nality at most that of the continuum is normable. For a discussion of this result,

and of related results, see [2, §9]. We consider here an opposite extreme, the

normability of nil algebras.

Throughout, we consider only commutative, linear associative algebras over C.

Let A be an algebra. If n G N, we write A " for the linear span of the set of

products of n elements of A. An element a of A is nil if a" = 0 for some n G N, the

algebra A is nilpotent if A " = 0 for some n G N, and A is nil if each element of A is

nilpotent. A vector space norm, ||.||, on an algebra A is submultiplicative, or an

algebra norm, if ||a¿>|| < ||a|| ||6|| (a, b G A).

First, suppose that A is a nilpotent algebra.

If A2 = 0, then certainly A is normable. For let {aa} be a basis for A over C, and

set |)2* A/<L || = 2,|a,|. Then ||.|| is a vector space norm on A, and in this case each

vector space norm is an algebra norm.

Now consider the case that A 3 = 0. An example to show that such an A may not

be normable is already implicit in the note [4] of Esterle. lip > 1, let lp denote the

usual Banach space. Then lp is a commutative Banach algebra with respect to

coordinatewise multiplication, and /* is an ideal in/'ifl < q < p. Let A = lp/l9.

Then, by [4, Theorem 3.1], A is normable if and only if p < 2q. By taking/», q so

that 3q > p > 2q > 2, we obtain an algebra A with A3 = 0 which is not normable.

However, this example uses the "main boundedness theorem" of Bade and Curtis

[1], and it may be of interest to give a totally elementary example.

Example 1. There exists a commutative algebra A with A3 = 0 which is not

normable.

Proof. As a vector space, A has as basis the set {es: s G [0, 1)}. The multiplica-

tion is given by

ej\s - t\     (s, t G (0, 1), s * t),

0 (otherwise).
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It is clear that the product of any three elements of A is zero, so that A is

associative and A3 = 0.

Now suppose that ||.|| is an algebra norm on A. Then

0 < ||e0|| <\s- t\ \\es\\ \\e,\\        (s, t G (0, 1), i * /)•

For n G N, let Un = {s G (0, 1): ||e,|| > n). If s G (0, 1) and if 0 < \t - s\ <

||«o||/«2|[<iH» men ' G Un- Thus, each Un is open and dense in (0, 1). By Baire's

theorem, ("1 U„ =£ 0, a contradiction. Thus A is not normable.

The above example clearly uses the uncountability of the dimension of A. In

fact, we shall now show that each nil, and in particular each nilpotent, algebra of

countable dimension is normable. (A proof, shorter than the following, that each

nilpotent algebra of countable dimension is normable can easily be given.) The

result is an easy consequence of the following lemma.

Lemma 2. Let B be a finite-dimensional algebra, and let A be a nil subalgebra such

that B is algebraically generated by A and by an element b0 of B with ¿>q G A.

Suppose that there is an algebra norm on A. Then there is an algebra norm on B

extending the norm on A.

Proof. Let ax, . . . , ap be a basis of A. Then (Z»0 + A, axb0 + A, . . . , apb0 4- A)

spans the vector space B/A. Choose a linearly independent subset of this set, say it

is {z, + A,. . ., zk + A), where z,, . . ., zk G B. Then each b G B has a unique

expression in the form b = a + 2" a¡z¡, with a G A and a„ .. ., ak G C: we set

ir(b) = (a„ . . . , ak).

Note that

(1) Z,Zj G A (i,j = 1, . . . , *)

because (arb0)(asb0) G A for r, s = 1, . . . ,p.

For a G A, let Ta: C* -+ C* be defined by

Ta(Xx,...,Xk) = ,r[a(Xxzx+--- +Xkzk)].

Then Ta is a linear map on C*, and we regard Ta as an element of Mk(C). The map

a t-* Ta of A into Mk(C) is an algebra homomorphism, and so { Ta: a G A } is a set

of commuting matrices in Mk(C). Thus, by [5, p. 134], we can choose a basis of C*

so that each matrix Ta is lower triangular with respect to the new basis. By

replacing each z, by the appropriate linear combination of z„ . . . , zk, we can

suppose that each Ta already has a lower triangular matrix. Note that equation (1)

still holds for the new z,, . . . , zk. Let Ta = [m¡j(a)] for a G A, where each mi} is a

linear functional on A and m¡. =0 if j > i. Clearly, each m¡¡ is a homomorphism

A^C.

Take a G A and let <f>: A -> C be a homomorphism. If <j>(a) =£ 0, let b = <p(a)"'a.

Since A is a nil algebra, there exists c G A with b + c = be, so that 1 + <p(c) =

<p(c), a contradiction. Thus </>(«) = 0. This shows that we can suppose that Ta =

[m0(a)] fora G A, where each m0 is a linear functional on .4 and nu, = 0 if/ > t.

Fory G {1, . . . , /c}, let 7^ = lin{yl, z„ . . ., z,}, and take L0 = A. Then we have

shown that, with our choice of z,, . . ., zk, we have Azj c Lj_x (j = 1, . . . , &).
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Using (1), it follows that

(2) BzjC.Lj_x        (j=l,...,k).

We shall successively define [|z,||, . . . , \\zk\\ (with ||zy.|| > 0). When we have

defined ||z,||, . . ., ||z,|| we extend the norm to L. by setting

\\a + a,z, + • • • +ajZj\\ = ||a|| + |a,| \\zx\\ + ■ ■ ■ + \a,\ ||z,||.

Clearly, we obtain on each Lj a norm which extends the norm on A. We shall show

that, with our choice of the ||zy||, the norm on Lk = B is submultiplicative.

In fact, we choose j|^|| so that for i = 1, . . . , k,

(3) ||az,.|| < M| ||z,.||    (aGL,._,)    and    ||z,2||< ||z,.||2.

Suppose that y = 1, or that y > 1 and that ||z,||, . . ., ||zy._,|| have been chosen so

that (3) holds for i = I, . . . ,j — I. If a G Lj_x, then azj G Lj_x by (2), and so

||az7|| and \\zf\\ have already been defined. Define a norm on L2_x by setting

||(*,.y)|| = ||jc|| + ll^ll, and let Xj = {(a, b) G LJL,: oz, = b). Then Xj is a hnear
subspace of the finite-dimensional normed space L2_x, and hence Xj is closed. Let

Yj = {(a, b) G Xy. \\b\\ = 1), a closed subset of L/_,. The map (a, b) h» ||a|| is a

continuous function on L2_x, and clearly S, = inf{||a||: (a, b) G Yy) is attained. If

(a, b) G Yj, then a^O, and so 6} > 0. We take ||z,|| = max{ó)_1, ||z/||1/2}, and it is

then easy to check that (3) holds in the case that i = j. Thus, we can choose

||z,||,. . . , ||Zfc|| so that (3) holds for / = 1, . . ., k.

We now confirm that the norm is indeed submultiplicative on B. Take a, b G B,

say a = a0 + 2f a^^ b = bQ + 2, ßz,, where a^, b0 G A, and a„ . . . , ak,

ßx,...,ßkEC. Then ab = a0¿»0 + ~2kx CjZj + E, Ofßff, where

7-t

Cj = ajb0 + ßja0 + 2 (oLißj + <*,&)%,
i = i

so that Cj G Lj_x. Then

HI^IMoll+ill^j+ÍM,!^2!.
1 1

But ||a0*oll < llaoll ll^oll because ||.|| is an algebra norm on A, and \\CjZj\\ <

\\Cj\\ \\zj\\, \\z2\\ < ||z,.||2by(3).Thus

HII < IKIIIIM + IIMI2 H M + INI 2141 INI

+ 2 (Kl \ßj\ + H |At)M ||z/|| + 2 H 1/3,1 ll^ll2i=i i

<(KII + SNN)(||M + 2|/37INI)
-MW-

as required.

We now give our result.

Theorem 3. Let A be a nil algebra with countable basis. Then A is normable.
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Proof. We can write A = U^0An, where A0 = {0}, where each An is a

finite-dimensional subalgebra of An+X, and where An+X is the algebra generated by

An and by an element an+x of yln+1 with a2+x G ^„. The algebras An are nil, and so

we can successively extend an algebra norm from An to A„+x. Hence, we can

construct an algebra norm on A.

A result which is apparently more general is also true.

Theorem 4. Let A be a radical algebra with countable basis. Then A is normable.

However, the extra generality is illusory because a theorem of Amitsur (see [6, p.

20]) shows that a radical algebra with countable basis is, in fact, a nil algebra.

It is not true that every algebra with countable basis can be normed.

Example 5. There exists a commutative algebra A with a countable basis which is

not normable.

Proof. Let P be the free polynomial algebra in the countable family of variables

(Xn: n G N), and let P0 denote the polynomials with zero constant term. Let 7 be

the ideal in P0 generated by the elements XXX„ — nX„ (n > 2), and let A = P0/I.

Then A is a commutative algebra with a countable basis, and we shall show that A

is not normable.

First note that X„ G 7 for n > 2. For if so, there exists n > 2, k G N, and

p2,...,PkEP0 with Xn = Zk„2(XxXj - jXj)Pj. Take Xx = X,Xn= Y, and Xj = 0

for j G N\ (1, «}. Then Y = (XY — nY)p(X, Y) for a polynomial /», and so

I = (X — n l)p(X, Y), which is not possible. Thus Xn G 7 for n > 2, as required.

Suppose that ||.|| is an algebra norm on A. Set an = X„ + I G A for n G N.

Then axa„ = nan(n> 2), and so n\\a„\\ < \\ax\\ \\an\\ (n > 2). Since X„ G 7, ||a„|| *=

0 for n > 2. Thus n < \\ax\\ (n > 2), a contradiction. Hence A is not normable.
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