APPLICATIONS OF THE *u***-CLOSURE OPERATOR**

M. SOLVEIG ESPELIE, JAMES E. JOSEPH AND MYUNG H. KWACK

To Professor George H. Butcher on his 60th birthday

ABSTRACT. Let $cl_u(A)$ be the *u*-closure of a subset A of a space. We prove that a space is compact if and only if for each upper-semicontinuous multifunction λ on the space, the multifunction μ defined on the space by $\mu(x) = cl_u(\lambda(x))$ assumes a maximal value under set inclusion. We also prove that in a Urysohn-closed space any two subsets with disjoint *u*-closures are separated by disjoint open subsets. The quotient space induced by identifying those points with identical *u*-closures is investigated and shown to be T_0 .

Introduction. In $[H_1]$ the notion of *u*-convergence of a filterbase was introduced and utilized to study Urysohn-closed and minimal Urysohn topological spaces in terms of arbitrary filterbases. The notion of *u*-convergence leads naturally to the concept of *u*-closure of a subset $A(cl_u(A))$ of a space which was employed in $[J_1]$ to obtain characterizations of Urysohn-closed and minimal Urysohn spaces. In this paper we (1) define certain subsets of a space in terms of cl_u , relate these subsets to others which have recently been studied and establish some decomposition and separation properties for these subsets, (2) show that a space X is compact if and only if for each upper-semicontinuous multifunction λ on X, the multifunction μ defined on X by $\mu(x) = cl_u(\lambda(x))$ assumes a maximal value under set inclusion, (3) use the result in (2) to prove a result for the compact-open topology and (4) study the quotient topology induced by identifying those points with identical *u*-closures, using the above results to show that this quotient space is always T_0 and to gather other information about this space.

Results. Let X be a space, $A \subset X$, $x \in X$ and let Ω be a filterbase on X. We let $\operatorname{cl}(A)$ and $\operatorname{ad} \Omega$ represent the closure of A and adherence of Ω respectively. We denote by $\Sigma(A)$ the collection of open neighborhoods of A and by $\Lambda(A)$ the collection of open sets which contain closed neighborhoods of A. (If $A = \{x\}$, we write $\Sigma(x)$ or $\Lambda(x)$.) The *u*-closure of A is $\{v \in X: \operatorname{each} V \in \Lambda(v) \text{ satisfies } A \cap \operatorname{cl}(V) \neq \emptyset\}$, and the *u*-adherence of Ω ($\operatorname{ad}_u \Omega$) is $\bigcap_{\Omega} \operatorname{cl}_u(F)$. The statements in our first proposition will be useful in the sequel. The proof of the proposition is straightforward and is omitted.

© 1981 American Mathematical Society 0002-9939/81/0000-0438/\$03.00

Received by the editors February 13, 1980.

AMS (MOS) subject classifications (1970). Primary 54A05, 54D30; Secondary 54B15, 54C60. Key words and phrases. Compactness, multifunctions, u-closure.

PROPOSITION 1. Let X be a space, let $A \subset X$, let Ω be a filterbase on X and let $x, y \in X$.

(a) The equations

$$\operatorname{cl}_{u}(A) = \bigcap_{\Sigma(A)} \operatorname{cl}_{u}(V) = \bigcap_{\Lambda(A)} \operatorname{cl}(W)$$

and

$$\operatorname{ad}_{u} \Omega = \operatorname{ad}_{u} \bigcup_{\Omega} \Sigma(F) = \operatorname{ad} \bigcup_{\Omega} \Lambda(F)$$

hold.

(b) If $x \in cl_u(y)$ then $y \in cl_u(x)$.

A net g u-converges to x in a space if g is eventually in cl(W) for each $W \in \Lambda(x)$ [H₁]. The question is raised in [H₁] as to how an open filterbase Ω can be constructed from a net g with the property that some subnet of g u-converges to x if and only if $x \in ad \Omega$. In our first theorem this question is answered by appeal to Proposition 1(a) and standard methods.

THEOREM 1. Let X be a space and let (g, D) be a net in X. For each $n \in D$, let $S(n) = \{g(k): k \ge n\}$. Then $\Omega(g) = \bigcup_D \Lambda(S(n))$ is an open filterbase on X, and $x \in \operatorname{ad} \Omega(g)$ if and only if some subnet of g u-converges to x.

We recall [V] that the θ -closure of a subset $A(cl_{\theta}(A))$ of a space is $\{x \in X: Each V \in \Sigma(x) \text{ satisfies } A \cap cl(V) \neq \emptyset\}$ and that $\bigcap_{\Omega} cl_{\theta}(F)$ is the θ -adherence of a filterbase Ω on a space. It is readily seen that $cl_u(V) = cl_{\theta}(cl(V))$ for any open subset V of a space. Let X be a space and let $A \subset X$. A is quasi H-closed (QHC) relative to X if each filterbase Ω on A satisfies $A \cap ad_{\theta} \Omega \neq \emptyset$ [H₂]. We say simply that A is quasi H-closed (QHC) if A is QHC relative to A; we define A to be quasi Urysohn-closed (QUC) relative to X if each filterbase Ω on A satisfies $\Omega \cap A$ satisfies $A \cap ad_u \Omega \neq \emptyset$. It is known that A is U(i) in the sense of Scarborough if and only if A is QUC relative to X. It is clear from the definitions and the relationship between cl_u and cl_{θ} on open subsets that A is QUC relative to X if A is QHC relative to X. Propositions 2 and 3 are stated without proof since the proofs are similar to those of the analogous results for QHC relative subsets.

PROPOSITION 2. The following statements are equivalent for a space X and $A \subset X$. (a) A is QUC relative to X.

(b) Each open filterbase Ω on A satisfies $A \cap \operatorname{ad}_{\mu} \Omega \neq \emptyset$.

(c) $A \cap ad \cup_{\Omega} \Lambda(F) \neq \emptyset$ is satisfied for each filterbase Ω on A.

(d) For each Urysohn open cover $[\mathbf{H}_1]$, Δ , of A by open subsets of X, some finite $\Delta^* \subset \Delta$ satisfies $A \subset \bigcup_{\Delta^*} \operatorname{cl}(V)$.

(e) Each net g in A has a subnet which u-converges to some point in A.

(f) Each filterbase Ω on X satisfying $F \cap C \neq \emptyset$ for each regular-closed subset which contains A also satisfies $A \cap \operatorname{ad}_{u} \Omega \neq \emptyset$.

(g) Each base for an ultrafilter on A u-converges $[H_1]$ to some point in A.

168

We say that a subset A of a space is u-closed if $cl_u(A) = A$ and θ -closed if $cl_{\theta}(A) = A$.

PROPOSITION 3. Let X be a space and let $A \subset X$. If A is QUC relative to X then cl(A) is QUC relative to X. If X is U(i) and A is u-closed then A is QUC relative to X.

It is known $[J_2]$ that if X is QHC then $cl_{\theta}(A)$ is QHC relative to X for each $A \subset X$. Our next theorem improves this result.

THEOREM 2. If X is QHC and $A \subset X$ then $cl_u(A)$ is QHC relative to X.

PROOF. Let Ω be a filterbase on $cl_u(A)$. If $W \in \Lambda(A)$, then $cl_u(A) \subset cl(W)$ and, consequently, $V \cap W \neq \emptyset$ is satisfied for all $V \in \Sigma(F)$, $F \in \Omega$ and $W \in \Lambda(A)$. Hence $\Omega^* = \{V \cap W: V \in \bigcup_{\Omega} \Sigma(F), W \in \Lambda(A)\}$ is an open filterbase on X. Hence $\emptyset \neq ad \Omega^* \subset ad_{\theta} \Omega \cap cl_u(A)$. The proof is complete.

We leave the following problem open.

Problem. Prove or disprove that $cl_u(A)$ is QUC relative to X for each subset A of a U(i) space.

In the following theorem we present an interesting set inclusion relation between the θ -closure of a QHC relative subset and the *u*-closures of the points of the set.

THEOREM 3. If A is QHC relative to a space X then $cl_{\theta}(A) \subset \bigcup_{A} cl_{\mu}(x)$.

PROOF. Let $y \in cl_{\theta}(A)$. Then $A \cap cl(V) \neq \emptyset$ is satisfied for all $V \in \Sigma(y)$. Hence $\emptyset \neq A \cap \bigcap_{\Sigma(y)} cl_{\theta}(cl(V)) = A \cap ad_{u} \Sigma(y) = A \cap cl_{u}(y)$. By Proposition 1(b), $y \in \bigcup_{A} cl_{u}(x)$. The proof is complete.

A subset A of a space X is θ -rigid if each filterbase Ω on X satisfying $F \cap \operatorname{cl}(V) \neq \emptyset$ for all $F \in \Omega$ and $V \in \Sigma(A)$ also satisfies $A \cap \operatorname{ad}_{\theta} \Omega \neq \emptyset$ [E-J]; we define A to be *u*-rigid if each filterbase Ω on X satisfying $F \cap \operatorname{cl}(W) \neq \emptyset$ for each $W \in \Lambda(A)$ and $F \in \Omega$ also satisfies $A \cap \operatorname{ad}_{u} \Omega \neq \emptyset$. The following characterization result is stated without proof; $\operatorname{int}(A)$ represents the interior of a subset A of a space.

PROPOSITION 4. The following statements are equivalent for a space X and $A \subset X$. (a) A is u-rigid.

(b) For each Urysohn open cover Δ of A by open subsets of X some finite $\Delta^* \subset \Delta$ satisfies $A \subset int(\bigcup_{\Delta^*} cl(V))$.

(c) Each open filterbase Ω on X satisfying $V \cap W \neq \emptyset$ for all $V \in \Omega$ and $W \in \Lambda(A)$ also satisfies $A \cap \operatorname{ad}_{u} \Omega \neq \emptyset$.

(d) If a net in X is frequently in cl(W) for each $W \in \Lambda(A)$ then some subnet of the net u-converges to some point in A.

(e) $A \cap \text{ad } \bigcup_{\Omega} \Lambda(F) \neq \emptyset$ is satisfied by any filterbase Ω on X such that $V \cap W \neq \emptyset$ is satisfied for all $V \in \bigcup_{\Omega} \Sigma(F)$ and $W \in \Lambda(A)$.

(f) Each base β for an ultrafilter on X satisfying $B \cap cl(W) \neq \emptyset$ for all $B \in \beta$ and $W \in \Lambda(A)$ u-converges to a point in X. Since there are Urysohn-closed spaces which are not *H*-closed, it is clear that there are *u*-rigid subsets which are not θ -rigid. The next result shows that θ -rigid subsets are *u*-rigid.

THEOREM 4. A θ -rigid subset of a space is u-rigid.

PROOF. The proof follows from Proposition 4(b) and the recollection that a subset A of a space X is θ -rigid if and only if for each cover Δ of A by open subsets of X some finite $\Delta^* \subset \Delta$ satisfies $A \subset int(\bigcup_{\Delta^*} cl(V))$.

In our next theorem we give a decomposition result for u-rigid subsets.

THEOREM 5. If A is a u-rigid subset of a space then $cl_u(A) = \bigcup_A cl_u(x)$.

PROOF. Let $y \in cl_u(A)$. Then $y \in cl(W)$ for each $W \in \Lambda(A)$. Hence $A \cap cl_u(y) \neq \emptyset$ and, consequently, $y \in \bigcup_A cl_u(x)$. The proof of the reverse inclusion is obvious.

COROLLARY 1. If A is a θ -rigid subset of a space then $cl_u(A) = \bigcup_A cl_u(x)$.

Our next three results provide information on separation of subsets of spaces by disjoint open sets.

THEOREM 6. Two subsets of a U(i) space with disjoint u-closures are separated by disjoint open subsets.

PROOF. Let X be U(i) and let A, B be subsets of X satisfying $cl_u(A) \cap cl_u(B) = \emptyset$. If all $V \in \Sigma(A)$ and $W \in \Sigma(B)$ satisfy $V \cap W \neq \emptyset$ then $\Omega = \{V \cap W : V \in \Sigma(A), W \in \Sigma(B)\}$ is an open filterbase on X. Since X is U(i) we have

 $\emptyset \neq \operatorname{ad}_{\mu} \Omega \subset \operatorname{ad}_{\mu} \Sigma(A) \cap \operatorname{ad}_{\mu} \Sigma(B) = \operatorname{cl}_{\mu}(A) \cap \operatorname{cl}_{\mu}(B).$

This is a contradiction and the proof is complete.

COROLLARY 2. Two disjoint u-closed subsets of a U(i) space are separated by disjoint open subsets.

THEOREM 7. If A, B are subsets of a space X with A u-rigid and $A \cap cl_u(B) = \emptyset$ then A and B are separated by disjoint open subsets.

PROOF. If $\Omega = \{ V \cap W : V \in \Sigma(A), W \in \Sigma(B) \}$ is a filterbase on X then, since A is u-rigid, we have $A \cap \operatorname{ad}_{u}(\Sigma(B)) \neq \emptyset$. The proof is complete.

Our next two results are preliminary to our characterizations of compactness in terms of cl_u and upper-semicontinuous multifunctions. A multifunction from a set X to a set Y is a function from X to $P(Y) - \{\emptyset\}$, where P(Y) is the family of subsets of Y. If λ is a multifunction from X to Y we will write $\lambda \in M(X, Y)$ and if $A \subset X$ we write $\lambda(A)$ for $\bigcup_A \lambda(x)$; if X and Y are spaces and $x \in X$, we say that λ is upper-semicontinuous (u.s.c.) at x if for each $W \in \Sigma(\lambda(x))$ some $V \in \Sigma(x)$ satisfies $\lambda(V) \subset W$; λ is upper-semicontinuous (u.s.c.) if λ is u.s.c. at each $x \in X$. A multifunction $\lambda \in M(X, Y)$ has a u-strongly-closed graph if $ad_u \lambda(\Sigma(x)) = \lambda(x)$ for each $x \in X$ [J₁]. Each function with a u-strongly-closed graph has a strongly-closed graph [H-L].

THEOREM 8. If $\lambda \in M(X, Y)$ is u.s.c. then $\operatorname{ad}_{u} \lambda(\Sigma(x)) = \operatorname{cl}_{u}(\lambda(x))$.

PROOF. It is clear that $cl_u(\lambda(x)) \subset ad_u \lambda(\Sigma(x))$ and for each $W \in \Sigma(\lambda(x))$, some $V \in \Sigma(x)$ satisfies $\lambda(V) \subset W$ and thus $ad_u \lambda(\Sigma(x)) \subset cl_u(\lambda(x))$. This completes the proof.

COROLLARY 3. A u.s.c. multifunction λ has a u-strongly-closed graph if and only if λ has u-closed point images.

THEOREM 9. The following statements are equivalent for a space X.

(a) X is compact.

(b) For each u.s.c. multifunction λ on X the multifunction μ on X defined by $\mu(x) = cl_{\mu}(\lambda(x))$ assumes a maximal value under set inclusion.

(c) Each u.s.c. multifunction λ on X with u-closed point images assumes a maximal value under set inclusion.

(d) Each u.s.c. multifunction λ on X with a u-strongly-closed graph assumes a maximal value under set inclusion.

PROOF. The equivalence of (c) and (d) follows from Corollary 3, and (c) is obviously implied by (b). To establish that (a) implies (b) let $\Omega = \{\mu(x): x \in X\}$ be ordered by set inclusion and let Ω^* be a nonempty chain in Ω . For each y such that $\mu(y) \in \Omega^*$ let $F(y) = \{x \in X : \mu(y) \subset \mu(x)\}$. Then $\{F(y)\}$ is a filterbase on the compact space X. If $\mu(y) \in \Omega^*$ let $v \in cl(F(y))$ and let $W \in \Sigma(\lambda(v))$. Some $V \in \Sigma(v)$ satisfies $\lambda(V) \subset W$. If $q \in V \cap F(y)$ then $\mu(y) \subset \mu(q) = cl_{\mu}(\lambda(q)) \subset V$ $cl_{\mu}(W)$. Hence $\mu(y) \subset \mu(v), v \in F(y)$ and F(y) is closed. Let $q \in \bigcap F(y)$. Then $\mu(q)$ is an upper bound for Ω^* . By Zorn's Lemma, Ω has a maximal element. To complete the proof, we will verify that (a) is implied by (c). If X is not compact there is a net g in X with an ordinal D as its index set and no convergent subnet. Let D have the order topology and for each $k \in D$ let V(k) = X - D $cl(\{g(j): j \ge k\})$. Then $\{V(k): k \in D\}$ is an increasing open cover of X with no finite subcover. Define $\lambda \in M(X, D)$ by $\lambda(x) = \{j \in D: j \le k(x)\}$ where k(x) is the first element k of D with $x \in V(k)$. Since D with the order topology is regular and $\lambda(x)$ is closed for each x then $\mu(x) = \lambda(x)$ for each x. If $W \in \Sigma(\lambda(x))$ and $y \in V(k(x))$ then $k(y) \leq k(x)$ so that $\lambda(y) \subset \lambda(x) \subset W$. Therefore $\lambda(V(k(x))) \subset \lambda(x) \subset W$. W and λ is u.s.c. Since μ clearly assumes no maximal value with respect to set inclusion we see that (c) fails. This completes the proof.

In a Urysohn space the *u*-closure of each point is trivially compact and maximal in the set of *u*-closures of points ordered by inclusion. We may use the results in Theorem 9 to prove that in any space the *u*-closures of points satisfy a maximality condition when the *u*-closure of some point is compact.

THEOREM 10. Let Y be a space and let $y_0 \in Y$ with $cl_u(y_0)$ compact. Then there is a $y \in Y$ such that (a) $cl_u(y_0) \subset cl_u(y)$ and (b) $cl_u(y)$ is maximal in the set of u-closures of points when this set is ordered by inclusion.

PROOF. Let $X = \{y \in Y : cl_u(y_0) \subset cl_u(y)\}$. For each $y \in X$ we have $y \in cl_u(y_0)$ from Proposition 1(b). Moreover, if $v \in cl(X)$ and $W \in \Sigma(v)$ then some $y \in W$

satisfies $cl_u(y_0) \subset cl_u(y) \subset cl_u(W)$. Hence $cl_u(y_0) \subset cl_u(v)$ and X is closed in Y. Therefore X is a compact subset of Y and since the identity function from X to Y is u.s.c. the proof may be completed by appeal to the fact that (a) implies (b) in Theorem 9.

The proofs of the following easily established corollaries are omitted.

COROLLARY 4. If Y is compact then for each $y_0 \in Y$ there is a $y \in Y$ such that (a) $cl_u(y_0) \subset cl_u(y)$ and (b) $cl_u(y)$ is maximal in the set of u-closures of points when this set is ordered by inclusion.

COROLLARY 5. If Y is a regular space and $y_0 \in Y$ then there is a $y \in Y$ such that (a) $y_0 \in cl(y)$ and (b) cl(y) is maximal in the set of closures of points when this set is ordered by inclusion.

If X is a space and F is a collection of functions from X to a space Y with F having the compact-open topology it is known that for each nonempty compact $A \subset X$ the multifunction $H_A \in M(F, Y)$ defined by $H_A(g) = g(A)$ is u.s.c. so we may prove the following corollary to Theorem 9.

COROLLARY 6. If X and Y are spaces and F is a compact family of functions from X to Y with the compact-open topology then for each nonempty compact $A \subset X$ there is a function g from X to Y such that $cl_u(g(A))$ is maximal with respect to set inclusion.

The quotient space induced by identifying those points of a given space with identical closures has been extensively studied. In the last results in this paper we initiate the study of the quotient space induced by identifying those points of a given space with identical *u*-closures (i.e. we say that x is equivalent to y if $cl_u(x) = cl_u(y)$). For $A \subset X$, let u[A] (u[x] if $A = \{x\}$) represent the saturation of A by the equivalence relation (i.e. $u[A] = \{y \in X: y \text{ is equivalent to some } x \in A\}$). A is saturated with the relation if u[A] = A. The next proposition follows from previous results.

PROPOSITION 5. The following properties hold for a topological space X.

(a) Each $x \in X$ satisfies $u[cl_u(x)] = cl_u(x)$.

(b) Each u-rigid $A \subset X$ satisfies $u[cl_u(A)] = cl_u(A)$.

(c) Each θ -rigid $A \subset X$ satisfies $u[cl_u(A)] = cl_u(A)$.

(d) Each $A \subset X$ satisfies $u[A] \subset cl_u(A)$.

(e) If $A \in \Lambda(B)$ in X then $u[B] \subset cl(A)$.

(f) For each $x \in X$, $\bigcap_{cl_u(x)} cl_u(v) = \{y \in X: cl_u(x) \subset cl_u(y)\}$.

(g) For $x, y \in X$ the relations (i) $y \in cl_u(x)$, (ii) $u[y] \cap cl_u(x) \neq \emptyset$, (iii) $u[x] \cap cl_u(y) \neq \emptyset$, (iv) $u[x] \subset cl_u(y)$ and (v) $u[y] \subset cl_u(x)$ are equivalent.

PROOF. For the proof of (a) let $y \in u[cl_u(x)]$. There is a $v \in cl_u(x)$ such that $y \in u[v]$. From Proposition 1(b), $x \in cl_u(v)$ and since $cl_u(v) = cl_u(y)$ we obtain $y \in cl_u(x)$. Hence the proof of (a) is complete since $cl_u(x) \subset u[cl_u(x)]$ from a general property of equivalence relations. The proof that (b) holds follows directly from (a), Theorem 5 and the fact that $u[\bigcup_{\Omega} F] = \bigcup_{\Omega} u[F]$ for any family Ω of

subsets of X. It is obvious from Corollary 1 and (b) that (c) holds. To prove (d) we note that

$$u[A] = \bigcup_{A} u[x] \subset \bigcup_{A} u[\operatorname{cl}_{u}(x)] = \bigcup_{A} \operatorname{cl}_{u}(x) \subset \operatorname{cl}_{u}(A)$$

for any $A \subset X$. We see that (e) follows from (d) and the readily established fact that $cl_u(B) \subset cl(A)$ when $A \in \Lambda(B)$. Similar methods may be utilized to establish (f) and (g). The proofs are omitted.

Let $X \pmod{u}$ represent the quotient space induced on X by the equivalence relation obtained. The following result is interesting.

THEOREM 11. $X \pmod{u}$ is T_0 for any space X.

PROOF. Suppose $x, y \in X$ with $u[x] \neq u[y]$. Without loss of generality let $v \in cl_u(x) - cl_u(y)$. Then $y \notin cl_u(v)$ and, consequently, $u[y] \cap cl_u(v) = \emptyset$ from Proposition 5(g). Hence $u[y] \subset X - cl_u(v)$ and $u[x] \subset cl_u(v)$. Since $X - cl_u(v)$ is an open subset of X saturated with the relation we conclude that X(mod u) is T_0 and the proof is complete.

If $cl_u(x)$ is maximal in the set of *u*-closures of points when this set is ordered by inclusion it follows that $u[x] = \{y \in X: cl_u(x) \subset cl_u(y)\}$ and from Proposition 5(f) we have u[x] closed in X. Hence we obtain the following proposition and corollaries.

PROPOSITION 6. If X is a space and $cl_u(x)$ is maximal in the set of u-closures of points when this set is ordered by inclusion then u[x] is closed in X.

COROLLARY 7. If X is a space and $cl_u(x)$ is maximal for all $x \in X$ then $X \pmod{u}$ is T_1 .

COROLLARY 8. If X is compact then $X \pmod{u}$ has at least one closed singleton.

PROOF. Theorem 10 and Proposition 6.

We complete the paper by giving several examples in connection with the preceding results. Let $\{p(k): k = 0, 1, 2, 3, ...\}$ be a strictly increasing sequence of primes. Let N be the set of natural numbers and let $W = N \cup \{0\}$. For $(j, k, m) \in N \times W \times N$ let $H(j, k, m) = \{(j + [p(k)]^{-n}, m): n \in N\}$; now let $J = (W \times N) \cup \bigcup_{N \times W} H(j, k, 1) \cup \bigcup_{N \times N \times N} H(j, k, m) \cup \{(0, 0), (1, 0)\}$ with the topology generated by the aggregate of basic open sets listed below.

(a) Subsets of $J - ((W \times N) \cup \{(0, 0), (1, 0)\})$.

(b) Subsets of the form $\{(0, 0)\} \cup \bigcup_{j \ge j_0} H(j, 0, 1)$.

(c) Subsets of the form $\{(1, 0)\} \cup \bigcup_{m \ge m_0} H(j, k, m)$.

(d) Subsets of the form $\{(0, m)\} \cup \bigcup_{j \ge j_0; k \ge k_0} H(j, k, m)$.

(e) All relative open sets from the plane in $\{(k, 1): k \in N\} \cup \bigcup_{N \times W} H(j, k, 1)$.

(f) For m > 1 and $i \in N$, all sets of the form $A \cup B$ where A is relatively open

in X from the plane about (i, m) and B is of the form $\bigcup_{j \ge j_0} H(j, i, m-1)$.

J satisfies the following properties.

(a) J is H-closed.

(b) The set $cl_u^n((0, 0))$ fails to be u-closed for each $n \in W$.

(c) $J(\mod u)$ is not T_2 even though $\operatorname{cl}_u(x)$ is maximal under set inclusion for each x. If $x \in J - [(W \times (N - \{1\})) \cup \{(0, 0)\}]$, then $\operatorname{cl}_u(x) = \{x\}$; $\operatorname{cl}_u((0, 0)) = \operatorname{cl}_u((0, 1)) = \{(0, 0)\} \cup (N \times \{2\}) \cup \{(0, 1)\} = \operatorname{cl}_u((n, 2))$ for each $n \in N$; for m > 2, $\operatorname{cl}_u((0, m - 1)) = \{(0, m - 1)\} \cup (N \times \{m\}) = \operatorname{cl}_u((j, m))$ for each $j \in N$. Hence $\operatorname{cl}_u(x)$ is clearly maximal for each $x \in J$. However, if $V \in \Sigma(u[(0, 0)])$ and $A \in \Sigma(u[(0, 2)])$ we see that $V \cap A \neq \emptyset$. Thus $J(\mod u)$ is not T_2 .

(d) Let V be a basic open set about (0, 0). Then $u[V] = V \cup (N \times \{2\}) \cup \{(0, 1)\}$ which is not open in J.

Finally, let n = 1, 2, 3, 4, let A(1) be the set of primes larger than 9 and let A(n) be the closed interval [2n, 2n + 1] otherwise. For each n, let $\Omega(n)$ be the filter of finite complements on A(n). Let $X = \bigcup A(n) \cup \{0, 1\}$ with the topology generated by the following open set base: $\{V \subset X: V \text{ is a usual open subset of } \bigcup_{n>2} A(n)\} \cup \{\{0\} \cup F(1) \cup F(2) \cup F(3): F(n) \in \Omega(n), n = 1, 2, 3\} \cup \{\{1\} \cup F(3) \cup F(4): F(n) \in \Omega(n), n = 3, 4\} \cup \{\{p\} \cup F: p \in A(1), F \in \Omega(2)\}$. Then X is compact and T_1 , but u[11] is not closed in X since $0 \in cl(u[11]) - u[11]$.

References

[E-J] M. S. Espelie and J. E. Joseph, Some properties of θ -closure, Canad. J. Math. (to appear).

[H₁] L. L. Herrington, Characterizations of Urysohn-closed spaces, Proc. Amer. Math. Soc. 55 (1976), 435-439.

[H₂] _____, Remarks on H(i) spaces and strongly-closed graphs, Proc. Amer. Math. Soc. 58 (1976), 277-283.

[H-L] L. L. Herrington and P. E. Long, Characterizations of H-closed spaces, Proc. Amer. Math. Soc. 48 (1975), 469-475.

[J₁] J. E. Joseph, On Urysohn-closed and minimal Urysohn spaces, Proc. Amer. Math. Soc. 68 (1978), 235-242.

[J₂] _____, Multifunctions and cluster sets, Proc. Amer. Math. Soc. 74 (1979), 329-337.

[V] N. V. Veličko, *H-closed topological spaces*, Mat. Sb. **70** (112) (1966), 98-112; English transl., Amer. Math. Soc. Transl. (2) **78** (1968), 103-118.

DEPARTMENT OF MATHEMATICS, HOWARD UNIVERSITY, WASHINGTON, D. C. 20059