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APPLICATIONS OF THE «CLOSURE OPERATOR

M. SOLVEIG ESPELIE, JAMES E. JOSEPH AND MYUNG H. KWACK

To Professor George H. Butcher on his 60th birthday

Abstract. Let cl„(,4) be the «-closure of a subset A of a space. We prove that a

space is compact if and only if for each upper-semicontinuous multifunction A on

the space, the multifunction ¡i defined on the space by /í(jc) = cl„(X(x)) assumes a

maximal value under set inclusion. We also prove that in a Urysohn-closed space

any two subsets with disjoint «-closures are separated by disjoint open subsets. The

quotient space induced by identifying those points with identical «-closures is

investigated and shown to be T0.

Introduction. In [H,] the notion of u-convergence of a filterbase was introduced

and utilized to study Urysohn-closed and minimal Urysohn topological spaces in

terms of arbitrary filterbases. The notion of «-convergence leads naturally to the

concept of u-closure of a subset A (c\u(A)) of a space which was employed in [Jj] to

obtain characterizations of Urysohn-closed and minimal Urysohn spaces. In this

paper we (1) define certain subsets of a space in terms of clu, relate these subsets to

others which have recently been studied and establish some decomposition and

separation properties for these subsets, (2) show that a space X is compact if and

only if for each upper-semicontinuous multifunction X on X, the multifunction ¡i

defined on X by ¡i(x) = clu(X(x)) assumes a maximal value under set inclusion, (3)

use the result in (2) to prove a result for the compact-open topology and (4) study

the quotient topology induced by identifying those points with identical «-closures,

using the above results to show that this quotient space is always T0 and to gather

other information about this space.

Results. Let A" be a space, A c X, x G X and let ñ be a filterbase on X. We let

cl(A) and ad 0 represent the closure of A and adherence of fi respectively. We

denote by ~2.(A) the collection of open neighborhoods of A and by A(A) the

collection of open sets which contain closed neighborhoods of A. (If A = {x}, we

write 2(x) or A(x).) The u-closure of A is [v G X: each V G A(v) satisfies

A n cl( V) 7e 0}, and the u-adherence of B (adu ß) is (~\a c\u(F). The statements in

our first proposition will be useful in the sequel. The proof of the proposition is

straightforward and is omitted.
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Proposition 1. Let X be a space, let A G X, let fi be a filterbase on X and let

x,y G X.

(a) The equations

c\u(a)= n <(v)= n ci(w)
X(A) A(A)

and

ad„ Q = ad„   U 2(F) = ad  (J A(F)

hold.

(b)IfxG cl„(v) then y G cl„(x).

A net g u- converges to x in a space if g is eventually in cl( W) for each W G A(x)

[H,]. The question is raised in [H,] as to how an open filterbase fi can be

constructed from a net g with the property that some subnet of g «-converges to x

if and only if x G ad ñ. In our first theorem this question is answered by appeal to

Proposition 1(a) and standard methods.

Theorem 1. Let X be a space and let (g, D) be a net in X. For each n G D, let

S(n) = {g(k): k > n}. Then fi(g) = UD A(S(n)) is an open filterbase on X, and

x G ad ß(g) if and only if some subnet of g u-converges to x.

We recall [V] that the 9-closure of a subset A (cl9(A)) of a space is {x G X: Each

V G 2(x) satisfies A n cl(F) ¥= 0} and that nn clfl(.F) is the ff-adherence of a

filterbase £2 on a space. It is readily seen that clu( V) = clfl(cl( V)) for any open

subset V of a space. Let A' be a space and let A c X. A is quasi H-closed (QHC)

relative to X if each filterbase ñ on A satisfies A n ad# 0=^0 [H2]. We say simply

that A is quasi H-closed (QHC) if A is QHC relative to A', we define A to be quasi

Urysohn-closed (QUC) relative to X if each filterbase ñ on A satisfies A n ad„ ß ^

0. It is known that A is £/(/) in the sense of Scarborough if and only if A is QUC

relative to A. It is clear from the definitions and the relationship between cl„ and

c\0 on open subsets that A is QUC relative to X if A is QHC relative to X.

Propositions 2 and 3 are stated without proof since the proofs are similar to those

of the analogous results for QHC relative subsets.

Proposition 2. The following statements are equivalent for a space X and A o X.

(a) A is QUC relative to X.

(b) Each open filterbase Si on A satisfies A n adtt ñ =?= 0.

(c) A n ad Uß A(.F) =^= 0 is satisfied for each filterbase SI on A.

(d) For each Urysohn open cover [HJ, A, of A by open subsets of X, some finite

A* c A satisfies A c U A. cl( V).

(e) Each net g in A has a subnet which u-converges to some point in A.

(f) Each filterbase ñ on X satisfying F n C ¥= 0 for each regular-closed subset

which contains A also satisfies A n adu ñ ^ 0.

(g) Each base for an ultrafilter on A u-converges [HJ to some point in A.
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We say that a subset A of a space is u-closed if clu(A) = A and 0-closed if

cl9(A) = A.

Proposition 3. Let X be a space and let A G X. If A is QUC relative to X then

cl(A) is QUC relative to X. If X is U(i) and A is u-closed then A is QUC relative to

X.

It is known [J2] that if X is QHC then c\9(A) is QHC relative to X for each

A G X. Our next theorem improves this result.

Theorem 2. // X is QHC and A g X then c\u(A) is QHC relative to X.

Proof. Let fi be a filterbase on c\u(A). If W G A(A), then c\u(A) c c\(W) and,

consequently, V n W# 0 is satisfied for all V G 2(F), F G fi and W G A(A).

Hence fi* = {V n W: V G U0 2(F), W G A(A)} is an open filterbase on X.

Hence 0 ^ ad fi* c ad^ fi n cluL4). The proof is complete.

We leave the following problem open.

Problem. Prove or disprove that c\u(A) is QUC relative to X for each subset A of

a U(i) space.

In the following theorem we present an interesting set inclusion relation between

the ^-closure of a QHC relative subset and the «-closures of the points of the set.

Theorem 3. If A is QHC relative to a space X then c\9(A) G (J A CK(X)-

Proof. Let y G cl9(A). Then A n cl( V) =»= 0 is satisfied for all F G 2(.y). Hence

0 *A n Dzo,) clö(cl(V)) = A n ad„ 2(v) = A n clu(y). By Proposition 1(b), v

G U a clu(x)- The proof is complete.

A subset A of a space X is ff-rigid if each filterbase fi on X satisfying

F n cl(K) ¥= 0 for all F G fi and K G 5(A) also satisfies .4 n ad9 fi =?= 0 [E-J];

we define /I to be u-rigid if each filterbase fi on X satisfying F n cl( W) =r= 0 for

each W G A(^) and F G fi also satisfies A n ad„ fi =7= 0. The following char-

acterization result is stated without proof; int(A) represents the interior of a subset

A of a space.

Proposition 4. The following statements are equivalent for a space X and A c X.

(a) A is u-rigid.

(b) For each Urysohn open cover A of A by open subsets of X some finite A* c A

satisfies A G int( UA« cl( V)).

(c) Each open filterbase fi on X satisfying V C\ W ^ 0 for all V G fi and

W G A(A) also satisfies A n ad„ fi =£ 0.

(d) If a net in X is frequently in cl( W)for each W G A(A) then some subnet of the

net u-converges to some point in A.

(e) A n ad Ua A(F) =7= 0 is satisfied by any filterbase il on X such that V n W

¥=0is satisfied for all V G U n 2(F) and W G A(A).

(f) Each base ß for an ultrafilter on X satisfying B n cl( W) ¥> 0 for all B G ß

and W G A(A) u-converges to a point in X.



170 M. S. ESPELIE, J. E. JOSEPH AND M. H. KWACK

Since there are Urysohn-closed spaces which are not //-closed, it is clear that

there are «-rigid subsets which are not 0-rigid. The next result shows that 0-rigid

subsets are «-rigid.

Theorem 4. A 9-rigid subset of a space is u-rigid.

Proof. The proof follows from Proposition 4(b) and the recollection that a

subset A of a space X is 0-rigid if and only if for each cover A of A by open subsets

of X some finite A* c A satisfies A c int( UA. cl( V)).

In our next theorem we give a decomposition result for «-rigid subsets.

Theorem 5. If A is a u-rigid subset of a space then clu(A) = U^ cl„(x).

Proof. Let y G clu(A). Then y G cl(W) for each W G A(A). Hence A n clu(y)

=/= 0 and, consequently, y G \JA cl„(x). The proof of the reverse inclusion is

obvious.

Corollary I. If A is a 0-rigid subset of a space then clu(A) = U^ cl„(x).

Our next three results provide information on separation of subsets of spaces by

disjoint open sets.

Theorem 6. Two subsets of a U(i) space with disjoint u-closures are separated by

disjoint open subsets.

Proof. Let X be U(i) and let A, B be subsets of X satisfying c\u(A) n c\u(B) =

0. If all V G 2(A) and W G 2(5) satisfy V n W ¥= 0 then !¡ = {Kn W:

V G 2(A), W G 2(5)} is an open filterbase on X. Since X is U(i) we have

0 + ad„ fi c ad„ 2(A) n ad„ 2(B) = cl„(^) n c\u(B).

This is a contradiction and the proof is complete.

Corollary 2. Two disjoint u-closed subsets of a U(i) space are separated by

disjoint open subsets.

Theorem 1. If A, B are subsets of a space X with A u-rigid and A n c\u(B) = 0

then A and B are separated by disjoint open subsets.

Proof. If fi = { V n W: V G 2(A), W G 2(B)) is a filterbase on X then, since

A is «-rigid, we have A n &àuÇ2(B)) =5= 0. The proof is complete.

Our next two results are preliminary to our characterizations of compactness in

terms of cl„ and upper-semicontinuous multifunctions. A multifunction from a set X

to a set y is a function from X to P(Y) — {0}, where P(Y) is the family of subsets

of Y. If A is a multifunction from X to Y we will write X G M(X, Y) and if A c X

we write X(A) for \JAX(x); if X and Y are spaces and x G X, we say that X is

upper-semicontinuous (u.s.c.) at x if for each W G 2(X(x)) some V G 2(x) satisfies

X(V) G W; X is upper-semicontinuous (u.s.c.) if A is u.s.c. at each x G X. A

multifunction X G M(X, Y) has a u-strongly-closed graph if ad„ A(2(x)) = X(x) for

each x G X [J,]. Each function with a «-strongly-closed graph has a strongly-

closed graph [H-L].
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Theorem S.IfXG M(X, Y) is u.s.c. then ad„ X(2(x)) = clu(X(x)).

Proof. It is clear that c\u(X(x)) c adu X(2(x)) and for each W G 2(X(x)), some

V G 2(x) satisfies X(V) c W and thus ad„ X(2(x)) G clu(X(x)). This completes the

proof.

Corollary 3. A u.s.c. multifunction X has a u-strongly-closed graph if and only if

X has u-closed point images.

Theorem 9. The following statements are equivalent for a space X.

(a) X is compact.

(b) For each u.s.c. multifunction X on X the multifunction n on X defined by

fi(x) = clu(X(x)) assumes a maximal value under set inclusion.

(c) Each u.s.c. multifunction X on X with u-closed point images assumes a maximal

value under set inclusion.

(d) Each u.s.c. multifunction X on X with a u-strongly-closed graph assumes a

maximal value under set inclusion.

Proof. The equivalence of (c) and (d) follows from Corollary 3, and (c) is

obviously implied by (b). To establish that (a) implies (b) let fi = {¡i(x): x G X}

be ordered by set inclusion and let fi* be a nonempty chain in fi. For each y such

that p.(y) G fi* let F(y) = {x G X: p(y) c K*)}- Then {F(y)} is a filterbase on

the compact space X. If ¡i(y) G fi* let v G c\(F(y)) and let W G 2(X(v)). Some

V G 2(v) satisfies X(V) c W. If q G V n F(y) then ¡i(y) c n(q) = c\u(X(q)) c

cl„( W). Hence ¡x(y) c n(v), v G F(y) and F(y) is closed. Let q G C\ F(y). Then

¡x(q) is an upper bound for fi*. By Zorn's Lemma, fi has a maximal element. To

complete the proof, we will verify that (a) is implied by (c). If X is not compact

there is a net g in I with an ordinal D as its index set and no convergent

subnet. Let D have the order topology and for each k G D let V(k) = X —

cl({ g(j): j > k}). Then ( V(k): k G D } is an increasing open cover of X with no

finite subcover. Define X G M(X, D) by X(x) = [j G D: j < k(x)} where k(x) is

the first element k of D with x G V(k). Since D with the order topology is regular

and X(x) is closed for each x then ¡i(x) = X(x) for each x. If W G 2(X(x)) and

y G V(k(x)) then k(y) < k(x) so that X(y) G X(x) c W. Therefore X(V(k(x))) c

W and À is u.s.c. Since /t, clearly assumes no maximal value with respect to set

inclusion we see that (c) fails. This completes the proof.

In a Urysohn space the «-closure of each point is trivially compact and maximal

in the set of «-closures of points ordered by inclusion. We may use the results in

Theorem 9 to prove that in any space the «-closures of points satisfy a maximality

condition when the «-closure of some point is compact.

Theorem 10. Let Y be a space and let y0 G Y with clu(.y0) compact. Then there is

a y G Y such that (a) clu(_y0) c <Au(y) and (b) c\u(y) is maximal in the set of

u-closures of points when this set is ordered by inclusion.

Proof. Let X = {y G Y: cl„(.y0) c c\u(y)}. For eachy G X we have.y G clu(y¿)

from Proposition 1(b). Moreover, if v G cl(A') and W G 2(v) then some y G W
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satisfies cl,,^,,) c clu(y) c cl„( W). Hence clu( v0) C cl„(t>) and X is closed in Y.

Therefore A' is a compact subset of Y and since the identity function from X to Y

is u.s.c. the proof may be completed by appeal to the fact that (a) implies (b) in

Theorem 9.

The proofs of the following easily established corollaries are omitted.

Corollary 4. If Y is compact then for each y0 G Y there is ay G Y such that (a)

clu(y0) c clu(y) and (b) clu(_y) is maximal in the set of u-closures of points when this

set is ordered by inclusion.

Corollary 5. If Y is a regular space andy0 G Y then there is ay G Y such that

(a) y0 G cl(y) and (b) cl(.y) is maximal in the set of closures of points when this set is

ordered by inclusion.

If X is a space and F is a collection of functions from A' to a space Y with F

having the compact-open topology it is known that for each nonempty compact

A G X the multifunction HA G M(F, Y) defined by HA(g) = g(A) is u.s.c. so we

may prove the following corollary to Theorem 9.

Corollary 6. If X and Y are spaces and F is a compact family of functions from

X to Y with the compact-open topology then for each nonempty compact A G X there

is a function g from X to Y such that c\u(g(A)) is maximal with respect to set

inclusion.

The quotient space induced by identifying those points of a given space with

identical closures has been extensively studied. In the last results in this paper we

initiate the study of the quotient space induced by identifying those points of a

given space with identical «-closures (i.e. we say that x is equivalent to v if

c\u(x) = cl„(_y)). For A c X, let u[A] (u[x] if A = {x}) represent the saturation of

A by the equivalence relation (i.e. u[A] = {y G X: y is equivalent to some

x G A}). A is saturated with the relation if u[A] = A. The next proposition follows

from previous results.

Proposition 5. The following properties hold for a topological space X.

(a) Each x G X satisfies w[clu(x)] = c\u(x).

(b) Each u-rigid A c X satisfies u[c\u(A)] = cl„04).

(c) Each 0-rigid A g X satisfies u[clu(A)] = clu(A).

(d) Each A g X satisfies u[A] c clu(A).

(e) If A G A(B) in X then u[B] c clL4).

(f) For each x G X, (-%.„« clu(v) = { v G X: cl„(x) C c\u(y)}.

(g) For x, y G X the relations (i) y G c\u(x), (ii) u[y] n clu(x) =r= 0, (iii) u[x] n

cK(y) ^ 0> 0V) "[■*] C clu(y) and (v) u[y] c clu(x) are equivalent.

Proof. For the proof of (a) let y G m[c1„(x)]. There isaoE cl„(x) such that

y G u[v\ From Proposition 1(b), x G clu(t>) and since clu(t>) = clu(.y) we obtain

v G clu(x). Hence the proof of (a) is complete since <Au(x) c w[clB(x)] from a

general property of equivalence relations. The proof that (b) holds follows directly

from (a), Theorem 5 and the fact that w[UßF] = Uß u[F] for any family fi of
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subsets of X. It is obvious from Corollary 1 and (b) that (c) holds. To prove (d) we

note that
■

u[A] = (J u[x] c U «[CL/*)] =  U   clu(x) G clu(A)
A A A

for any A c X. We see that (e) follows from (d) and the readily established fact

that clu(B) c cl(A) when A G A(B). Similar methods may be utilized to establish

(f) and (g). The proofs are omitted.

Let AXmod u) represent the quotient space induced on X by the equivalence

relation obtained. The following result is interesting.

Theorem 11. A^mod u) is T0for any space X.

Proof. Suppose x, y G X with u[x] 7= u[y]. Without loss of generality let v G

CK(X) ~ cKiy)- Then y £ clu(t>) and, consequently, u[y] n cl„(u) = 0 from Prop-

osition 5(g). Hence u[y] G X — cl„(u) and u[x] c clu(u). Since X — c\u(v) is an

open subset of X saturated with the relation we conclude that Ar(mod «) is T0 and

the proof is complete.

If clM(x) is maximal in the set of «-closures of points when this set is ordered by

inclusion it follows that u[x] = ( y G X: clu(x) c clu( y)} and from Proposition 5(f)

we have u[x] closed in X. Hence we obtain the following proposition and

corollaries.

Proposition 6. If X is a space and c\u(x) is maximal in the set of u-closures of

points when this set is ordered by inclusion then u[x] is closed in X.

Corollary 1. If X is a space and c\u(x) is maximal for all x G X then A"(mod u)

is Tx.

Corollary 8. If X is compact then A"(mod u) has at least one closed singleton.

Proof. Theorem 10 and Proposition 6.

We complete the paper by giving several examples in connection with the

preceding results. Let {p(k): k = 0, 1, 2, 3, . . . } be a strictly increasing sequence

of primes. Let N be the set of natural numbers and let W = N Li {0}. For

(j, k, m) G N X W X N let H(j, k, m) = {(j + [p(k)Yn, m): n G N}; now let

j = (W X N) u UNxfVH(j, k, 1) U UNxNxNH(j, k, m) u {(0, 0), (1, 0)} with

the topology generated by the aggregate of basic open sets listed below.

(a) Subsets of J - ((W X N) u {(0, 0), (1, 0)}).

(b) Subsets of the form ((0, 0)} u \Jj>J0H(j, 0, 1).

(c) Subsets of the form {(1, 0)} u Um>mH(j, k, m).

(à) Subsets of the form {(0, m)} u  UJ>Jotk>koH(j, k, m).

(e) All relative open sets from the plane in {(k, 1): k G N} u U Nx fvH(J> k, 1).

(f) For m > 1 and /' G N, all sets of the form A u B where A is relatively open

in X from the plane about (/, m) and B is of the form U,>7 H(j, i, m — 1).

J satisfies the following properties.

(a) / is //-closed.

(b) The set cl^((0, 0)) fails to be «-closed for each n G W.
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(c) /(mod m) is not T2 even though cl„(x) is maximal under set inclusion for each

x. If x G J - [(W X (N - {1})) u {(0, 0)}], then cL/x) = {x}; cl„((0, 0)) =

cl„((0, 1)) = {(0, 0)} u (JV X {2}) u {(0, 1)} = cl„((n, 2)) for each « G TV; for m

> 2, cl„((0, m - 1)) = {(0, m-l)}u(N x{m}) = clu((J, m)) for each j G N.

Hence c\u(x) is clearly maximal for each x G J. However, if V G 2(«[(0, 0)]) and

A G 2(w[(0, 2)]) we see that V n A ¥= 0. Thus /(mod ») is not T2.

(d) Let V be a basic open set about (0, 0). Then u[ V] = V u (N X {2}) u

{(0, 1)} which is not open in J.

Finally, let n = 1, 2, 3, 4, let ^4(1) be the set of primes larger than 9 and let A(n)

be the closed interval [2n, 2« + 1] otherwise. For each n, let fi(«) be the filter of

finite complements on A(n). Let X = U A(n) u (0, 1} with the topology generated

by the following open set base: ( V c X: F is a usual open subset of U„>2 A(n)}

U {{0} u F(l) u F(2) u F(3): F(n) G ü(n), n = 1, 2, 3} u {{1} U F(3) U F(4):

F(n) G fi(n), n = 3, 4} u {{/»} U F: p G A(\), F G fi(2)}. Then X is compact and

7"„ but «[11] is not closed in X since 0 G cl(«[ll]) - «[11].
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