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AN ORDER THEORETIC CHARACTERIZATION OF

NESTED SPACES

R. E. SMITHSON1

Abstract. A characterization of nested spaces in terms of their order theoretic

properties is given. This characterization is analogous to the order theoretic

characterization of trees given by L. E. Ward, Jr.

Partial orders in topological spaces have been of great interest to topologists

since the classic work of Nachbin [7]. Later L. E. Ward, Jr. [11] studied partially

ordered topological spaces and in 1954 gave a characterization of trees in terms of

an inherent partial order [12]. Recently Fúgate, Gordh and Lum [1] and [2] gave an

order theoretic characterization of arc smooth continua. Other similar results were

obtained by Smithson [8], Smithson and Muenzenberger [4], and Ward [13].

Another area in which partial orders have played a key role is the study of

dendritic spaces. See, in particular, the comprehensive work of Ward [14] and the

recent results of Muenzenberger and Smithson [5] and [6]. In 1946, G. S. Young, Jr.

[15] introduced the notion of a nested space. Nested spaces possess a natural order

structure which has proven useful in obtaining fixed point theorems (see, for

example, [9] and [10]). The algebraic properties of nested spaces were studied

extensively by Muenzenberger and Smithson [3]. The purpose of the present paper

is to give a characterization of nested spaces analogous to Ward's characterization

of trees [12].

Suppose (X, <) is a space with a partial order < . We set L(x) = {y: y < x}

and M(x) = { y: x < v}. A set A c A' is an antiset in case no two elements of A

are related. Further, the partial order is order dense in case x <y implies that there

is a z G X with x < z <y.

In this paper a continuum is a compact, connected T^-space and an arc is a

continuum which contains exactly two nonseparating points. A tree is a continuum

in which any two distinct points can be separated by the omission of a third point.

Then a space X is nested in case it is arcwise connected, T2 and the union of every

nest of arcs is contained in an arc. If A" is a nested space and a, b G X, then there

is exactly one arc in A with endpoints a, b. Using this fact we define a partial order

< on A" as follows. Let e G X be fixed. Then x < y if f x is an element of the arc

with endpoints e,y. A number of properties of this partial order can be derived and
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some of these are given in the following theorem which is the order theoretic

characterization of nested spaces mentioned above.

Theorem. A T2-space X is a nested space if and only if X admits a partial order <

which satisfies:

(1) There is a least element e G X.

(2) L(x) is compact and totally ordered for each x G X.

(3) < is order dense.

(A) If A G X is an arc, then any antiset in A contains at most two elements.

(5) Every maximal totally ordered subset of M (a) is compact for all a G X.

Proof. First suppose that A" is a nested space, and let < be the order defined

above. Then there is a least element e. Further, L(x) is an arc (or L(x) = {e}) for

each x G X and so (2) and (3) follow. Next, if A c X is an arc, and if x, y G A are

not related then inf{x,y} = x /\ y = z exists and is in A. From this it follows that

A is the union of two totally ordered subárcs, one containing x and the other j>, and

so (4) holds. Finally, (5) follows since the maximal totally ordered sets in Af(a) are

arcs. Thus, a nested space admits a partial order satisfying the five conditions.

Now assume that X admits a partial order < which satisfies conditions (l)-(5).

First, we shall show that if A is a closed totally ordered set, then M(x) n A is

closed for all x G X. We may assume that M(x) n A =?= 0 and thus Af(jc) n A is

contained in a maximal totally ordered subset A0 of Af(x) which is closed. But

M(x) n A = A n A0 and so M(x) n A is closed. Next, let a G A" and x G L(a).

Then M(x) n L(a) is closed. Thus the partial order restricted to the compact,

r2-space L(a) satisfies: (i) L(x), M(x) are closed in L(a) for all x G L(a). (ii)

L(x) n L(y) t= 0 and totally ordered for all x, y G L(a). (iii) It is order dense, (iv)

M(x) — x = L(a) — L(x) is open for all x G L(a). But these are exactly the

conditions given by Ward [12] to characterize trees. Thus each L(a) is an arc or the

least element of the space, since each L(a) is a totally ordered tree and it follows

that X is arcwise connected.

To show that X is uniquely arcwise connected we shall use the following. If

A G X is an arc, then Af(x) n A is closed for each x G X. To establish this, we

first show that A is the union of two closed totally ordered sets. If A is totally

ordered, then we are done. Thus, suppose there are noncomparable points ax,

a2 G A. Let Ax, A2 be maximal totally ordered subsets of A which contain ax, a2,

respectively. If a3 G A — (Ax u A2), then there is a maximal totally ordered subset

A3 of A with a3 G A3. Since A¡ is maximal, L(x) n A c A¡ whenever x G A¡ for

i = 1, 2, 3. From this we deduce that the sets A¡ — (Aj u Ak), i,j, k distinct

elements of {1, 2, 3}, are nonempty. But then if we pick bx G Ax — (A2 \j A3),

b2 G A2 — (Ax u A3) and b3 G A3 — (Ax u Aj), we have an antiset with three

elements, which is contrary to (4). Consequently, A = Ax u A2. Then (M(x) n A)*

= (M(x) n Ax)* u (Mix) n A2)* = (M(x) n Ax) u Af(x) n A2 = M(x) n A

and we are done.

Next if A is any nonempty totally ordered set, then an application of (2) or (5)

shows that the least upper bound and greatest lower bound of A  exist in X.
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Further, if a, b are two noncomparable elements of X, then L(a) n L(b) contains

its least upper bound, which is the greatest lower bound of a, b. Therefore

a /\b = glb{a, b} exists in X for all a, b G X.

Let A G X be a nondegenerate arc and suppose a, b are noncomparable ele-

ments of A. Then a f\b G A.To see this we have from the above, A = Ax u A2

where each A¡ is a closed totally ordered set. So each A¡ contains a largest element

Oj. Then A c L(ax) u L(a2) and suppose a G L(ax) and b G L(aj). Note that

a A b = ax A a2 = c. We may assume that ax, a2 are the endpoints of A, and since

L(a2) is closed, there is a maximal half-open subarc of A with endpoints ax, x0

which is contained in L(ax) — L(a2). But then x0 G L(ax) n L(a2) and so x0 < c.

Now all elements of the open arc from ax to x0 in A are in Af(c) n L(ax) and if

x0 < c we obtain a contradiction to (5). Thus x0= c and so c G A.

Now suppose that X contains a circle C. If C is totally ordered, it contains a

largest element x0 and then C c L(x0) which is a contradiction. Thus suppose C

contains two noncomparable elements a, b. Then a, b are the endpoints of two arcs

in C and a /\ b must be in both of them, again a contradiction. Hence, we have

shown that X is uniquely arcwise connected.

Finally, we must show that the union of any nest of arcs is contained in an arc.

For this note that any maximal totally ordered subset of a set M(x) is an arc with

one endpoint x. Further, if A is an arc with endpoints a, b with a not related to b,

then A = Ax u A2 where Ax = M(a A b) n L(a), A2 = M(a Ab) (1 L(b) and

AX,A2 are totally ordered subarcs. Thus let & be a nest of arcs. If U & is totally

ordered we are done. Hence, suppose that ax, a2 G U & and that ax, a2 are not

related. Let c = ax A ^2- Let ax, a2 G A0 G ($■, and A G &. Since A0 g A or

A g Aq, it follows by the above that every element of A is related to one of ax, a2.

Thus defined, = {x G U &: x is related to aj} for 1 = 1, 2. Then \J& = Ax\j A2

and each of Ax, A2 is totally ordered. Then A¡ is contained in an arc with one

endpoint c for each i «■ 1,2, and the theorem is proved.

Now we present two examples of nonnested spaces which illustrate the signifi-

cance of conditions (4) and (5).

Example 1. Define the following sets in the plane: A, = {(x, y): y = sin wx,

0 < x < 1}; X2 = {(x,y): x = 0, -2 < y < 1); X3 = {(x,y): y = -2, 0 < x <

1}; A"4 = {(x,y): x = 1, -2 < y < 0}. Then X = U,t, A,, is a Warsaw circle. Let

e = (0, 1) and < the partial order previously defined with least element e. Then

conditions (l)-(4) are all satisfied. However, Af(z) is totally ordered for all z G X

but is closed only if z = (0, 1). Thus (5) fails. Note that the closure of each totally

ordered set is totally ordered since A is totally ordered. Further, if A c X is an arc,

then A n M(x) is also an arc (or a point or empty) and so is closed. Thus (5)

cannot be replaced by these weaker conditions.

Example 2. Let X be the unit disk in the plane and let e be the origin. Then

x < y in X if and only if x, y are in the same radial segment from e and x is

between e andy. Then conditions (1), (2), (3) and (5) are satisfied but X contains

arcs which are antisets. Hence, (4) fails.

These two examples show that (4) and (5) are independent and thus both are
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necessary in the theorem. Of course, there may be other statements which could

replace either of them. An example of a nested space which is quite interesting is

the following.

Example 3. In the plane let X„ = {(\/n,y): 0 <y < 1} and let X_n =

{(-\/n,y): -1 < y < 0} for n > 2. Let X0 = {(0,y): -1 < y < 1), A"_, =

{(x, -1): -1 < x < 0} and A, = {(x, 1): 0 < x < 1}. Then X = U"..«, Jf„. It is

easy to see that X is nested. Moreover, there does not exist an e so that the partial

order with least element e will have closed upper sets Af(x) for all x G X. This is

quite different from the situation for trees and arc smooth continua.

Fúgate, Gordh and Lum [2] proved that a metric continuum X is arc smooth if

and only if A admits a partial order which has a closed graph, which has a least

element and for which the sets L(x) are order arcs for each x G X. From this and

the above theorem we have:

Corollary. A uniquely arcwise connected, arc smooth continuum is nested.

Remark. The example above shows that the converse of this corollary does not

hold.
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