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THE RADON TRANSFORM ON A FAMILY OF CURVES

IN THE PLANE1

A. M. CORMACK

Abstract. Inversion formulas are given for Radon's problem when the line

integrals are evaluated along curves given, for a fixed (p, <f>), by r" cos|a(9 — <£)| =

p", where a is real, o ^ 0.

Radon's problem, the recovery of a function from its integrals along straight

lines in the plane, has received considerable attention in recent years because of its

many practical applications, notably in medicine. The reason that straight Unes are

significant is that the probing agents in many applications, photons, charged

particles, and phonons, obey Newton's first law and travel in straight lines unless

they undergo interactions. It is easy to conceive of situations in which the probing

agents do not follow straight lines, so Radon's problem needs to be generalized to

other curves. Such generalizations have been made for certain ellipses and circles

[5], [7], and for circles through the origin [1], [3]. When certain Fourier expansions

are made, the treatment of these last circles is so similar to the treatment of straight

lines using the same expansions [1], [2], [6] that it seemed desirable to see whether

they could both be special cases of a more general set of curves in the plane. The

purpose of this note is to treat a family of curves in the plane which does contain

these as special cases.

Let (r, 0) and (p, <j>) be polar coordinates in the plane and consider the curves

given by

(la) ra cos{a(0 - $)} = pa,       \0 - <¡>\ < m/2a.

We could let a be a real number not equal to zero, but it is convenient to treat

positive and negative values of a separately. Hence in (la) we restrict a to a > 0,

and we shall refer to these curves as "a-curves". For a < 0 we write ß = -a and

refer to the curves

(lb) pß cos{ ß(0 - <f>)} = rß,       \0-<j>\<v/2ß

as "ß-curves". For given values of a or ß and (p, <f>), (la) and (lb) describe curves

which are symmetrical about the line 0 = <j>. The a-curves tend to infinity as

\0 — f>| -» it/2a; they intersect themselves at least once if 0 < a < 1/2, but they

do not intersect themselves if a > 1/2. Well-known special cases are parabolae,
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straight lines, and one-branched hyperbolae for a = 1/2, 1, and 2 respectively. The

yß-curves tend to the origin as \0 — <j>\ —> m/2ß; they intersect themselves at least

once if 0 < ß < 1/2 but they do not intersect themselves if ß > 1/2. Well-known

special cases are cardioids, circles through the origin, and one-branched lemnis-

cates of Bernoulli for ß = 1/2, 1, and 2 respectively. Many a- and ¿S-curves occur

as the orbits of particles moving under a central force, or the orbits of charged

particles moving in certain magnetic fields. The inversion of an a-curve in the unit

circle ((r, 0) -» (l/r, 0)) is a ß-curve with ß = a, and conversely. A related result is

that the Radon transform of a delta-function taken with respect to an a-curve is

concentrated on a /8-curve with ß = a, and conversely.

Let/(r, 0) be a smooth rapidly decreasing function and let/(p, <b) be the Radon

transform of/along some a-curve specified by (p, <b). Then we can write

(2) f(p,<t,)=ff(r,0)dstt,

where dsa is an element of length along the a-curve. Using (la), (2) becomes

(3)      ÂP,<t>)=pr/2aA—?—,*+*)_^_.
V       '     %U/a» V cos'/^atp)   9     Vf cosx + x/"(atf

Now write

(4) f(r,0)=   S  me"9,
/=-00

where

(5) ft A = i\ n*A (2mf<r a\„-uefl(r) = (l/2TT)jJf(r,9)e-

Then it is known that f,(r) is smooth and rapidly decreasing and also that

fi(r) - r'g(r) where g is an even, smooth, rapidly decreasing function of r. Sub-

stituting (4) into (3) we have

/=-00

/__«,      J—r/2*  \cosx/a(a\p)J cosx + x/a(aip)

Now if/is expanded in a Fourier series:

(7) Kp,*)=   2  kp)e"*,
/=-00

then

(8)        îÀP)=pr/2afi—e—)_*_.
W JA"    PJ- V2« 'V cos'/^o^) } cos1 + '/«(a*)

Putting r = p/cosx/a(a\p), (8) becomes

'" (1 - (p/r)")"2
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The Radon transform on the ^-curves can be treated in the same way and, using

(4) and (7) for the expansion of /and/, one finds that

J> (1 - (r/pf'f
(9a) and (9b) may be simplified by making the substitutions r" or rß = s, p" or

pP = q and defining

(10) Fl(s) = (l/a)fl(sx/")sx/"-x,

(11) fa}-AM)
for the a-curves, and defining F, and F¡ for the ^-curves by substituting ß for a in

(10) and (11). When this is done we have

(.2a) F,(q) - 2r-w~(('/.)~-W.)l *
J- (i - (?/s)2)"2

for the a-curves, and

(12b) PM) - i/'*)»»!!Äl m

for the /?-curves. (12a) and (12b) are integral equations for the F, given the F„ and

if they can be solved we have inversion formulae for Radon's problem on this

family of curves.

The solution of (12a) and (12b) follows the same pattern as in [1] for the cases

a = ß = \. Multiply (12a) by

cosh {( // q)cosh ~ ' ( q/1)}

l((l/f - O*72

and integrate over q:

/•» F,(g)cosh{(//a)cosh-|(g/i)}   dq

j> {(q/tf - l)'/2 1
(13)

/•°°cosh{(//a)cosh   x(q/t)}   dq r00 F,(s)cos{(l / a)cos  x(q/s)}

'    j> {(q/tf - 1)'/2 ^ (1 - {q/s)f/2

Because F¡ is rapidly decreasing the order of integration on the right-hand side may

be changed and the right-hand side becomes

(14)    2 f°°F(s) ds C cosh{(//a)cosh"'(g/0}cos{(V«)cos~'(g/-y)}   dq

J<      ' j< (l-(q/s)r2((q/t)2-lf2 «"

But it is shown in the Appendix that the ¿/-integral in (14) is just tt/2, hence (13)

becomes

(,5a)    .fm äs - rm ^y *.
'• '' (it/'f -if       "
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and differentiation of this yields

(16) Fit)-     1    d   r^F,cosh{(l/a)cx)Sh-x(q/t)}   dq

*  *>' ((q/l)2-l)l/2 q

as the solution of (12a). The derivative may be taken under the integral sign to give

the alternative form

(17a) Fit)-     1  rdP^q)   cosh{(//")cosh~'(<?A)} dg

K     ' A) -ni,       dq (q2-tf/2

(12b) may be treated in the same way by multiplying it by

cosh{(///3)cosh-'(//<7)}

q{{t/qf - 1)1/2

and integrating q from 0 to t. The order of integration on the right-hand side may

again be changed, and use of (A8) instead of (A7) yields

(i5b)      ,f'F¡(s)ds= r^(g)cosh{(//^)cosh"(f/g)) X
Jo Jo ((í/,7)2 - 1),/2 «

from which one obtains

o*,    m -i jp,(.rh((wrh";<;A)1 ä,
° ((i/i)' - 0 *

and

(i7b) fu)- l ('dp,{q) coshi(Wcosh~1('/<?)} <?<*?

K      ' A)      TTtJo     dq (t2 _ q2y/2

(16) and (17) provide the inversion formulae for Radon's problem for this family

of curves. They also demonstrate the "hole" theorems appropriate to the two cases:

for the a-curves it is only necessary to know/(p, </>) for/? > r0 in order to determine

f(r0, 9); for the /»-curves it is only necessary to know/(/?, <#>) for/» < r0 in order to

determine f(r0, 9).

For a fixed t the cosh term in (16a) and (17a) becomes large as q -» oo in a way

which increases rapidly with increasing /. Hence in a practical problem in which F¡

is known only from noisy data the noise will be propagated badly into the

calculation of F, for small / unless / is small. Likewise, in equations (16b) and (17b)

noise will be propagated badly into the calculation of F, from noisy data for F,

near the origin unless / is small.

When a or ß = 1 in (9), (6) and (17) the cos and cosh terms can be written as

Tschebycheff polynomials of the first kind since, if n = 0, 1, 2, 3, ..., Tn(x) =

cos{n cos-1 x} if |x| < 1, and Tn(x) = cosh{n cosh-1 x) if |x| > 1. In these cases

one obtains some nice properties of the/, and/ such as: (i) the number of zeros/

must have, (ii) the relation between the Hankel transform of / and the Fourier

transform of / for a = 1, and, as a consequence of (ii), (iii) relations between

orthogonal expansions of / and /. The F, and F¡ appear to have similar properties
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only for the special cases a or ß = \/m, m = 1, 2, 3, ... . They will not be given

here because they are simple extensions of results given in [1], [2], [3], and [6].

The author would like to thank E. T. Quinto for his helpful comments on a first

draft of this paper.

Appendix: Evaluation of two integrals. Consider the integral

,.. /•■scos{a cos_1(ç/j)}cosh{a cosh_1(£7//)}   dq

~J< (1 - {q/s)f%q/t)2 - 1)'/2 T

where a is real and 0 < t < s. For a = 0, 1, 2, . . .   this is the integral used in

reference A, and its value was given as it/2. It is readily seen that

(A2)       7 = -^r- -¡—r Tsinía cos_1(i7/5)}sinh{a cosh_1(?/0}-f ■
a     "S at Jt q*

Let F (a, b; c; x) be the ordinary hypergeometric function defined by

(A3) F(a box) =     r<c>      f  IX« + n)T(b + n) £_
(AJ) na,b,c,x)     r(a)r(/?)Zo r(c + rt) „i

then the sin and sinh functions in (A2) can be written as hypergeometric functions,

and (A2) becomes

1 ' -s2t2^dtf(l - («A)2)'72««/')2 - l)1/2^> MA 1 - (a/sf)

(A4) '

■F(a,b;3/2;\-(q/t)2)^
q

where a = (1 + a)/2 and b = (1 — a)/2.

If the hypergeometric functions in (A4) are written as their defining series, (A4)

becomes a double sum over n and m of integrals of the form

JT(1 - (ç/sf)"+ï/2((q/tf - 1)M+1/2^

<73

Differentiating these with respect to 5 and t as in (A4) they become integrals which

are just beta-functions. One of the sums in 7 is then itself a hypergeometric

function and (A4) becomes

(A5)    ,=.|(y),('-(-A)Y%t;tt,;1.(,^
z k = 0      \l)k K-

Now Hansen [4, 65.2.4, p. 426] gives the following result.

2   (aH¿)* ^ffrf ~b,c;k + d; -^-¡-) = (1 - x)cF(è, a + c;d;x).
k = 0      \")k rC.      \ X        1 /

Putting 1 - t2/s2 = x,d=\,a = (\ + a)/2, b = (1 - a)/2, (A5) becomes

(A6) / = Z(,_x)U-«)/V(i-^,l;l;x),
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and, since

F(iT^,l;l;x) = (l-x) -<(I-«)/2)

(A6) becomes

(A7) 7 = tt/2.

To deal with the ß-curves, making the substitution q = st/x in (Al) yields

,.„. /-*cos{ ß cos~'(f/x)}cosh{ ß cosh~'(,s/x)}   dx _ it

j>     (i-(t/x)f/2((s/xf-iy/2     T_I'
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