THE SPACE OF RETRACTIONS OF A COMPACT Q-MANIFOLD IS AN /2-MANIFOLD

KATSURO SAKAI

ABSTRACT. In this paper, we prove that the space of retractions of a compact Hilbert cube manifold is an l^2 -manifold. This answers a question raised by T. A. Chapman.

Let M be a compact Q-manifold, and let R(M) be the space of retractions of M, equipped with the sup-metric, i.e., $R(M) = \{e | e : M \to M \text{ is continuous, } e^2 = e\}$. T. A. Chapman [2] proved that R(M) is an ANR, and he asked whether R(M) is an l^2 -manifold. The purpose of this paper is to answer this question affirmatively.

THEOREM. R(M) is an l^2 -manifold.

Recently, H. Toruńczyk gave the mapping characterization of l^2 -manifolds [3, Corollary 3.3], which states that a separable complete-metrizable ANR X is an l^2 -manifold if and only if the following two conditions are satisfied:

- (*) For each $n \in \mathbb{N}$, any two continuous maps $f, g: I^n \to X$ can be arbitrarily closely approximated by continuous maps with disjoint images.
- (**) For any sequence $\{P_n\}_{n\in\mathbb{N}}$ of compact polyhedra, any continuous map f: $\sum_{n\in\mathbb{N}}P_n\to X$ can be arbitrarily closely approximated by a continuous map g: $\sum_{n\in\mathbb{N}}P_n\to X$ such that $\{g(P_n)\}_{n\in\mathbb{N}}$ is locally finite in X.

Actually, the condition (*) is unnecessary, that is, the condition (**) implies the condition (*) since, as noted in [4], if $g_i: I^n \to X$ ($i \in \mathbb{N}$) are approximations of a continuous map $g: I^n \to X$ such that $\{g_i(I^n)\}_{i \in \mathbb{N}}$ is locally finite in X, then for every compact subset K of X, $g_i(I^n)$ is disjoint from K for almost all $i \in \mathbb{N}$. Thus, it suffices to show that R(M) satisfies the condition (**).

Since M is homeomorphic to $M \times Q$ [1], we may show that $R(M \times Q)$ satisfies the condition (**). Points of $M \times Q$ will be denoted by $y = (y_0, y_1, y_2, \dots)$, where $y_0 \in M$ and $y_i \in I_i = [-1, 1]$ $(i = 1, 2, \dots)$. We use the metric on $M \times Q$ defined by

$$d(y,y') = d_{M}(y_{0},y'_{0}) + \sum_{i=1}^{\infty} 2^{-i}|y_{i} - y'_{i}|,$$

where d_M is a metric on M. $R(M \times Q)$ is equipped with the sup-metric $d(e, e') = \sup\{d(e(y), e'(y))|y \in M \times Q\}$.

Received by the editors July 22, 1980 and, in revised form, February 12, 1981; presented to the Society of Japan, October 1, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54C35, 58D15, 57N20.

Key words and phrases. Space of retractions, ANR, Q-manifold, l^2 -manifold.

¹D. W. Curtis suggested to me that J. van Mill noted this.

An ambient invertible isotopy h_t $(t \in [1, \infty))$. We will define an ambient invertible isotopy h_t : $(M \times Q) \times Q \to M \times Q$ $(t \in [1, \infty))$. First we define homeomorphisms h_i , $h_{i+j/i}$: $(M \times Q) \times Q \to M \times Q$ (i = 1, 2, ...; j = 1, ..., i - 1) as follows.

$$h_{1}(y, z) = (y_{0}, y_{1}, z_{1}, y_{2}, z_{2}, y_{3}, z_{3}, y_{4}, z_{4}, \dots),$$

$$h_{2}(y, z) = (y_{0}, y_{1}, y_{2}, -z_{1}, z_{2}, y_{3}, z_{3}, y_{4}, z_{4}, \dots),$$

$$h_{2+(1/2)}(y, z) = (y_{0}, y_{1}, y_{2}, -z_{1}, y_{3}, -z_{2}, z_{3}, y_{4}, z_{4}, \dots),$$

$$h_{3}(y, z) = (y_{0}, y_{1}, y_{2}, y_{3}, z_{1}, -z_{2}, z_{3}, y_{4}, z_{4}, \dots),$$

$$h_{3+(1/3)}(y, z) = (y_{0}, y_{1}, y_{2}, y_{3}, z_{1}, -z_{2}, y_{4}, -z_{3}, z_{4}, \dots),$$

$$h_{3+(2/3)}(y, z) = (y_{0}, y_{1}, y_{2}, y_{3}, z_{1}, y_{4}, z_{2}, -z_{3}, z_{4}, \dots),$$

$$h_{4}(y, z) = (y_{0}, y_{1}, y_{2}, y_{3}, y_{4}, -z_{1}, z_{2}, -z_{3}, z_{4}, \dots),$$

$$\vdots$$

$$h_{i}(y, z) = (y_{0}, \dots, y_{i}, (-1)^{i-1}z_{1}, (-1)^{i-2}z_{2}, \dots, (-1)z_{i-1}, z_{i},$$

$$y_{i+1}, z_{i+1}, y_{i+2}, z_{i+2}, \dots),$$

$$\vdots$$

$$h_{i+(j/i)}(y, z) = (y_{0}, \dots, y_{i}, (-1)^{i-1}z_{1}, \dots, (-1)^{j}z_{i-j}, y_{i+1},$$

$$(-1)^{j}z_{i-j+1}, \dots, (-1)z_{i}, z_{i+1}, y_{i+2}, z_{i+2}, \dots),$$

$$\vdots$$

$$h_{i+1}(y, z) = (y_{0}, \dots, y_{i+1}, (-1)^{(i+1)-1}z_{1}, \dots, (-1)z_{i}, z_{i+1},$$

$$y_{i+2}, z_{i+2}, y_{i+3}, z_{i+3}, \dots)$$

$$\vdots$$

Let θ_t : $[-1, 1]^2 \to [-1, 1]^2$ $(t \in I)$, be an ambient invertible isotopy such that $\theta_0 = id$, $\theta_1(s_1, s_2) = (s_2, -s_1)$ for each $(s_1, s_2) \in [-1, 1]^2$. For each

$$t \in [i + (j-1)/i, i + j/i]$$
 $(i = 1, 2, 3, ...; j = 1, ..., i),$

we define

$$h_i = \theta_{i(t-i-(i-1)/i)}^{i,j} \circ h_{i+(i-1)/i} : (M \times Q) \times Q \rightarrow M \times Q,$$

where $\theta_t^{i,j}$: $M \times Q \to M \times Q$ $(t \in I)$ is an ambient invertible isotopy defined by

$$\theta_t^{i,j}(y) = (y_0, \ldots, y_{2i-j}, \theta_t(y_{2i-j+1}, y_{2i-j+2}), y_{2i-j+3}, \ldots).$$

Note that our ambient invertible isotopy h_t ($t \in [1, \infty)$) has the following properties:

- (1) If $t \le i$, then $p_{2i}h_i(y, z) = z_i$ for all $(y, z) \in (M \times Q) \times Q$,
- (2) If t > i, then $p_i h_i(y, z) = y_i$ for all $(y, z) \in (M \times Q) \times Q$.

PROOF OF THE CONDITION (**). Let $\{P_n\}_{n\in\mathbb{N}}$ be a sequence of compact polyhedra and $f: \sum_{n\in\mathbb{N}} P_n \to R(M\times Q)$ a continuous map. For any continuous function ε : $R(M\times Q)\to (0,\infty)$, there exists a continuous function δ : $r(M\times Q)\to (0,1]$ such that $\delta(e) \le \varepsilon(e)/2$ and $d(y,y') < \delta(e) (y,y'\in M\times Q)$ implies $d(e(y),e(y')) < \varepsilon(e)/2$ for each $e\in R(M\times Q)$. (This is because the function $\bar{\delta}$: $R(M\times Q)\to (0,\infty)$ defined by $\bar{\delta}(e)=\sup\{\delta>0|d(y,y')<\delta\Rightarrow d(e(y),e(y'))<\varepsilon(e)/2\}$ is lower semicontinuous.)

Each P_n admits a triangulation K_n such that

(3)
$$\sup\{\delta f(x)|x\in\sigma\}-\inf\{\delta f(x)|x\in\sigma\}<2^{-n}$$
 and

(4)
$$\sup\{\delta f(x)|x\in\sigma\}<2\inf\{\delta f(x)|x\in\sigma\}$$

for each simplex σ of K_n . For each $x \in P_n$, let $(x(v))_{v \in K_n^0}$ be the barycentric coordinates of x with respect to the triangulation K_n . For each vertex v of K_n , choose a positive integer i(v) so that $2^{-i(v)+2} \le \delta f(v) < 2^{-i(v)+3}$ and define a continuous function $t: \sum_{n \in \mathbb{N}} P_n \to [1, \infty)$ by

$$t(x) = \sum_{v \in K_n^0} x(v)i(v)$$
 for each $x \in P_n$.

For each $n \in \mathbb{N}$, let $r_n: [-1, 1] \to [-1, 1]$ be a piecewise-linear map such that $r_n(-1) = r_n(0) = r_n(1) = 1$ and $r_n(1/n) = 1/n$. Then define $r_n^*: Q \to Q$ by

$$r_n^*(z_1, z_2, \dots) = (r_n(z_1), r_n(z_2), \dots).$$

Now, we define a map $g: \sum_{n \in \mathbb{N}} P_n \to R(M \times Q)$ by

$$g(x) = h_{t(x)} \circ (f(x) \times r_n^*) \circ h_{t(x)}^{-1}$$
 for each $x \in P_n$.

Since h_t $(t \in [1, \infty))$ is an ambient invertible isotopy, g is continuous. We assert that g is a desired approximation of f.

First, we see that $d(f(x), g(x)) < \varepsilon f(x)$ for each $x \in \sum_{n \in \mathbb{N}} P_n$. Let $x \in \sigma \in K_n$. There exists a vertex v of σ such that $i(v) \le t(x)$. From (2) and (4), $d(h_{t(x)}, p) \le 2^{-i(v)+1} \le \delta f(v)/2 < \delta f(x)$ where $p: (M \times Q) \times Q \to M \times Q$ is the projection. Hence

$$d(f(x)p, f(x)h_{t(x)}) < \varepsilon f(x)/2.$$

Thus

$$d(f(x), g(x)) \leq d(f(x), p(f(x) \times r_n^*) h_{t(x)}^{-1}) + d(p(f(x) \times r_n^*) h_{t(x)}^{-1}, g(x))$$

$$= d(f(x) h_{t(x)}^{-1}, p(f(x) \times r_n^*)) + d(p, h_{t(x)})$$

$$< d(f(x) h_{t(x)}^{-1}, f(x) p) + \delta f(x) < \varepsilon f(x).$$

Next, we claim that $\{g(P_n)\}_{n\in\mathbb{N}}$ is locally finite in $R(M\times Q)$. Suppose not. Then there exists a convergent sequence $g(x_{n_i})\to e\in R(M\times Q)$, where $x_{n_i}\in P_{n_i}$ for each $i\in\mathbb{N}$. For convenience, assume $n_i=n$; thus $g(x_n)\to e\ (n\to\infty)$, $x_n\in P_n$. If there exists a positive integer i_0 such that $t(x_n)\leqslant i_0$ for each $n\in\mathbb{N}$, then $p_{2i_0}g(x_n)=r_np_{2i_0}$ from (1), where $p_i\colon M\times Q\to I_i$ is the projection. This is a

contradiction, because $p_{2i_0}g(x_n) \to p_{2i_0}e$ but $r_np_{2i_0}$ cannot converge to any continuous function. Thus $\{t(x_n)\}_{n\in\mathbb{N}}$ is unbounded. Hence we may assume that $t(x_n) \to \infty$ $(n \to \infty)$. Then $h_{t(x_n)} \to p$, so $d(g(x_n), p(f(x_n) \times r_n^*)h_{t(x_n)}^{-1}) \to 0$. Hence $p(f(x_n) \times r_n^*)h_{t(x_n)}^{-1} \to e$, so $d(p(f(x_n) \times r_n^*), eh_{t(x_n)}^{-1}) \to 0$. Since $eh_{t(x_n)} \to ep$, $f(x_n)p = p(f(x_n) \times r_n^*) \to ep$. Therefore $f(x_n) \to e$ because p is onto. On the other hand, there are vertices v_n of the carriers of x_n such that $t(x_n) \le i(v_n)$. Since $\delta f(v_n) < 2^{-i(v_n)+3}$ and $t(x_n) \to \infty$, $\delta f(v_n) \to 0$. From (3), $|\delta f(v_n) - \delta f(x_n)| < 2^{-n}$, then $\delta f(x_n) \to 0$. Hence $\delta(e) = 0$. This is a contradiction. \square

I would like to express my thanks to D. W. Curtis for helpful suggestions which simplify my arguments in the proof.

REFERENCES

- 1. R. D. Anderson and R. M. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315-330.
- 2. T. A. Chapman, The space of retractions of a compact Hilbert cube manifold is an ANR, Topology Proc. 2 (1977), 409-430.
 - 3. H. Toruńczyk, Characterizing Hilbert space topology, Inst. Math. Polish Acad. Sci., preprint 143.
- 4. R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. (to appear).

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, IBARAKI, JAPAN