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THE SPACE OF RETRACTIONS OF A COMPACT

2-MANIFOLD IS AN /2-MANIFOLD

KATSURO SAKAI

Abstract. In this paper, we prove that the space of retractions of a compact

Hubert cube manifold is an /2-manifold. This answers a question raised by T. A

Chapman.

Let M be a compact ö-manifold, and let R(M) be the space of retractions of M,

equipped with the sup-metric, i.e., R(M) = {e|e: M-+ M is continuous, e2 = e).

T. A. Chapman [2] proved that R(M) is an ANR, and he asked whether R(M) is

an /2-manifold. The purpose of this paper is to answer this question affirmatively.

Theorem. R(M) is an l2-manifold.

Recently, H. Toruñczyk gave the mapping characterization of /2-manifolds [3,

Corollary 3.3], which states that a separable complete-metrizable ANR A' is an

/2-manifold if and only if the following two conditions are satisfied:

(*) For each n G N, any two continuous maps fig: I" —* X can be arbitrarily

closely approximated by continuous maps with disjoint images.

(**) For any sequence {F„}„eN of compact polyhedra, any continuous map/:

2„eN pn ~* % can be arbitrarily closely approximated by a continuous map g:

2neN pn -* x such that { g(Pn)}n<EN is locally finite in X.

Actually, the condition (*) is unnecessary,1 that is, the condition (**) imphes

the condition (*) since, as noted in [4], if g¡: I" —> X (i G N) are approximations of

a continuous map g: I" —» X such that { g,(7'I)},eN is locally finite in X, then for

every compact subset K of X, g¡(I") is disjoint from K for almost all i G N. Thus, it

suffices to show that R(M) satisfies the condition (**).

Since M is homeomorphic to M X Q [1], we may show that R(M X Q) satisfies

the condition (**). Points of M X Q will be denoted by y = (yç, v,, y2, . . .), where

y0G M and y¡ G 7, = [-1, 1] (i = 1, 2, . . . ). We use the metric on M X g

defined by
00

d{y, v') = dM(yo,y'Q) + 2 2-i\yi-y'i\,
i=i

where dM is a metric on M. R(M X Q) is equipped with the sup-metric d(e, e') =

sup{d(e(y), e'(y))\y G M X Q}.
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An ambient invertible isotopy «, (t G [1, oo)). We will define an ambient in vert-

ible isotopy «,: (M X Q) X Q —* M X Q (t G [1, oo)). First we define homeomor-

phisms «„ hi+j/i: (M X Q) X Q -* M X Q (i = 1, 2, . . . ; j = 1, . . ., i - 1) as
follows.

hiiy, z) = (yo,yx, zx,y2, z2,y3, z3,y4, z4, . . . ),

h2iy, z) = ( Vo, y„y2, -z„ z2,y3, z3,y4, z4, . . . ),

h2+{\/T>(y>z) = ( y&yv y2> -*i» v3. -** z3,yA, z# ■ ■ ■ )>

Ä3(.V, z) = ( v0,7i, v2, v3, z„ -z2, z3, v4, z4, . . . ),

h3+o/3)iy, z) = ( yo>yi>y2> y* fu -^^ -** «♦•••)>

A3 + (2/3)( v, z) = ( Vo,^,, V2, V3, Z„ V4, 22, -z3, z4, . . . ),

Kiy, z) = (.Vo,.y., v2, v3,.y4, -z,, z2, -z3, z4,. . . ),

:

My, z) = (^0, . . . ,y¡, i-\rXzx, (-l)'-2z2, . . ., (-l)z,_,, z,,

\
y¡+l> Zí+l'^i + 2> z/ + 2> • • • )>

/t,+o/0(v, z) = (^o, . . . ,y¡, (-1)'   'z„ . . . , (-t/z,-.,.,>>,■+„

(-iyz,._y.+1,..., (-i)z,., z,.+,,>>,.+2, z,+2,... ),

¿i+iCv, z) = (y0, . . . ,y,+i, (-l)(, + 1)"'z„ . . ., (-l)z,.,zl+1,

^1+2' Zi + 2> y¡ + 3' z/ + 3> • • • J

Let 9,: [-1, l]2-»[-l, l]2 (/ G 7), be an ambient invertible isotopy such that

90 = id, 9x(sx, s^ = (s2, -sx) for each (sx, s^ G [-1, l]2. For each

tG[i + (j- \)/i, i +j/i]    (i = 1, 2, 3, ...;/ = 1, ..., /),

we define

«, = 9;(i_i_(J_X)/i) ° «)+0-1)/(: (MxQ)xQ-^MxQ,

where 9¡J: M X Q -* M X Q (t G I) is an ambient invertible isotopy defined by

9jJ{y) = (.vo> • • • ,y2i-j, o,{y2i-j+\,y2i-j+2),y2i-j+3, ■ ■■)■

Note that our ambient invertible isotopy «, (/ G [1, 00)) has the following proper-

ties:

(1) If t < /', then p2iht(y, z) = z, for all (y, z) G (M X Q) X Q,

(2) If t > i, thenp¡ht(y, z) = y¡ for all (y, z) G (M X Q) X Q.
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Proof of the condition (**). Let {F„}nSN be a sequence of compact polyhedra

and/: 2„eN P„ -> R(M x Q) a continuous map. For any continuous function e:

R(M X £?)—»(0, oo), there exists a continuous function 8: r(M X Q)^>(0, 1]

such that 5(e) < e(e)/2 and d(y, y') < 8(e) (y,y' G M X Q) implies d(e(y), e(y'))

< e(e)/2 for each e G R(M X Q). (This is because the function 8: R(M X Q) ->

(0, oo) defined by 8(e) = sup{5 > 0\d(y,y') < 8 => d(e(y), e(y')) < e(e)/2) is

lower semicontinuous.)

Each Pn admits a triangulation Kn such that

(3) sup{6/(x)|x G o} - htí{8f(x)\x G o} < 2'"

and

(4) sup{ó/(x)|x G o} < 2 inf{8f(x)\x G o}

for each simplex o of K„. For each x G Pn, let (x(v))veKv be the barycentric

coordinates of x with respect to the triangulation Kn. For each vertex v of K„,

choose a positive integer i(v) so that 2"'(ü)+2 < Sfiv) < 2~'(ü)+3 and define a

continuous function t: 2neN P„ —»[1, oo) by

l(x) =   2   xiv)'(v)    f°r eacn x e Pn-

v<EK°

For each « G N, let rn: [-1, l]-»[-l, 1] be a piecewise-linear map such that

r„i-l) = r„(0) = rn(l) = 1 and rn(\/n) = 1/«. Then define rf. Q^Qby

r*(zx, z2, . . . ) = (^(2^ r„(z2), . . .).

Now, we define a map g: 2„6N Fn -» TÎ(Af X g) by

Six) = «,(JC) » (/(x) X /•„*) o &¿}   for each x G T>„.

Since h, (t G [1, oo)) is an ambient invertible isotopy, g is continuous. We assert

that g is a desired approximation off.

First, we see that d(fix), g(x)) < efix) for each x G 2„eN Pn. Let x G o G Kn.

There exists a vertex u of o such that /(u) < t(x). From (2) and (4), d(h,M,p) <

2-<(«)+i < g/(u)/2 < Sfix) where /?: (M X Q) X Q^> M X Q is the projection.

Hence

d(f(x)p,f(x)ht(x)) < ef(x)/2.

Thus

difix),g(x)) < d(f(x),p(f(x) X rn*)«^) + d(p(f(x) X r:)h^,g(x))

= d(f(x)h-¿),p(f(x) X r*)) + d(p, hl(x))

< d(f(x)h-¿yf(x)p) + Sfix) < efix).

Next, we claim that {g(F„)}„eN is locally finite in R(M X Q). Suppose not.

Then there exists a convergent sequence g(xn¡) —» e G R(M X Q), where x^ G P^

for each / G N. For convenience, assume «, = «; thus g(xn) -» e (n -» oo), x„ G Pn.

If there exists a positive integer /„ such that t(x„) < i0 for each « G N, then

p2iog(xn) = r„p2io from (1), where p¡: M X g -» I¡ is the projection. This is a
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contradiction, because p2¡og(x„) -^>p2ie but rj>2io cannot converge to any continu-

ous function. Thus {i(*„)}„eN is unbounded. Hence we may assume that t(xn)—*

oo   («->oo).   Then   h,M   -h> p,   so   d(g(xn),  p(f(x„) X tf)«,^ -► 0.   Hence

Pifixn) X OKm -* e> so d(P(Äxn) x rnl «*¿j) -»°- Since b^j -* e/>, /(*> =

p(f(xn) X r*) -» ep. Therefore f(xn) —»• e because p is onto. On the other hand,

there are vertices vn of the carriers of x„ such that t(xn) < i(vn). Since 8f(vn) <

2-'<"->+3 and t(xn) -» oo, 8f(v„) -0. From (3), |ó/(u„) - ó/(x„)| < 2~", then 6y(x„) -*

0. Hence 5(e) = 0. This is a contradiction.   □

I would like to express my thanks to D. W. Curtis for helpful suggestions which

simplify my arguments in the proof.
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