ON A MEAN ERGODIC THEOREM

RYOTARO SATO

ABSTRACT. A recent mean ergodic theorem of Shaw [2] is improved. The proof given below is simple and direct.

The purpose of this paper is to prove the following

THEOREM. Let $(T_t: t > 0)$ be a strongly continuous semigroup of uniformly bounded linear operators on a Banach space X. Suppose there exists $\delta > 0$ such that $||T_t - I|| < 2$ for all $0 < t < \delta$. Then for each $0 < t < \delta$

$$\lim_{b \to \infty} \frac{1}{b} \int_0^b T_s x \, dx = \lim_n \frac{1}{n} \sum_{i=0}^{n-1} T_{ii} x$$

provided one of these limits exists.

PROOF. If X_0 [resp. X_t , t > 0] is the set of all x in X at which

$$P_0 x := \lim_{b \to \infty} \frac{1}{b} \int_0^b T_s x \, ds \quad \left[\text{resp. } P_t x := \lim_n \frac{1}{n} \sum_{i=0}^{n-1} T_{ii} x \right]$$

exists, then, as is well known (see e.g. [1, Corollaries VIII.5.2 and VIII.7.2]),

$$X_0 = \left[\bigcap_{s>0} N(T_s - I)\right] \oplus \overline{\left[\bigcup_{s>0} R(T_s - I)\right]}$$

and

$$X_t = N(T_t - I) \oplus \overline{R(T_t - I)}.$$

Moreover if $x \in N(T_t - I)$ (i.e. $T_t x = x$) then

$$\lim_{b \to \infty} \frac{1}{b} \int_0^b T_s x \, dx = \lim_n \frac{1}{nt} \int_0^{nt} T_s x \, ds = \frac{1}{t} \int_0^t T_s x \, ds,$$

and thus $x \in X_0$. Therefore $X_i \subset X_0$, and hence to prove the theorem it suffices to show that

$$\left[\bigcup_{s>0} R(T_s-I)\right] \subset \overline{R(T_t-I)} \qquad (0 < t < \delta).$$

To do this, however, it also suffices to show that

$$\overline{R(T_{t/2}-I)} \subset \overline{R(T_t-I)} \qquad (0 < t < \delta),$$

because the semigroup $(T_t: t > 0)$ is strongly continuous.

Received by the editors September 20, 1980.

Key words and phrases. Semigroups of operators, mean ergodic theorem.

© 1981 American Mathematical Society 0002-9939/81/0000-0527/\$01.50

¹⁹⁸⁰ Mathematics Subject Classification. Primary 47A35, 47D05.

Suppose $x \in \overline{R(T_{t/2} - I)}$, which is equivalent to $P_{t/2}x = 0$. Then $\frac{1}{2n} \sum_{i=0}^{2n-1} T_{it/2} = \frac{1}{2} \Big[I + T_{t/2} \Big] \left(\frac{1}{n} \sum_{i=0}^{n-1} T_{it}x \right)$ $= \Big[I + \frac{1}{2} (T_{t/2} - I) \Big] \left(\frac{1}{n} \sum_{i=0}^{n-1} T_{it}x \right)$

and thus

$$\left|\frac{1}{n}\sum_{i=0}^{n-1}T_{ii}x\right| \leq \left\|\frac{1}{2n}\sum_{i=0}^{2n-1}T_{ii/2}x\right\| + \frac{1}{2}\left\|T_{i/2} - I\right\| \left\|\frac{1}{n}\sum_{i=0}^{n-1}T_{ii}x\right\|,$$

therefore

$$\left\|\frac{1}{n}\sum_{i=0}^{n-1}T_{it}x\right\| \le \left(1-\frac{1}{2}\|T_{t/2}-I\|\right)^{-1}\left\|\frac{1}{2n}\sum_{i=0}^{2n-1}T_{it/2}x\right\| \to 0$$

as $n \to \infty$, since $1 - \frac{1}{2} ||T_{t/2} - I|| > 0$. This proves that $P_t x = 0$, or equivalently that $x \in \overline{R(T_t - I)}$. Hence the theorem is established.

REFERENCES

1. N. Dunford and J. T. Schwartz, *Linear operators*. Part I: General theory, Interscience, New York, 1958.

2. S.-Y. Shaw, Ergodic projections of continuous and discrete semigroups, Proc. Amer. Math. Soc. 78 (1980), 69-76.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, OKAYAMA UNIVERSITY, OKAYAMA, 700 JAPAN

564