CURVATURE ESTIMATES FOR COMPLETE AND BOUNDED SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD

YOSHIHISA KITAGAWA

ABSTRACT. Let M be a complete n-dimensional submanifold in the (2n-1)-dimensional Euclidean space, with scalar curvature bounded from below. Baikousis and Koufogiorgos proved that the sectional curvature of M satisfies sup $K_M > \lambda^{-2}$ if M is contained in a ball of radius λ . We extend this result to the case that the ambient space is a complete simply connected Riemannian manifold of nonpositive curvature.

1. Introduction. For p < n, let M be a complete n-dimensional Riemannian submanifold in the (n + p)-dimensional Euclidean space E^{n+p} . Under the assumption that the scalar curvature of M has a lower bound, Baikousis and Koufogiorgos [1] proved that if M is contained in a ball of radius λ , then the sectional curvature K_M of M satisfies sup $K_M > \lambda^{-2}$. In this note we obtain a natural extension of the above inequality when the ambient space is a complete simply connected (n + p)-dimensional Riemannian manifold of nonpositive curvature. To state our result, we introduce a continuous function $f: [0, \infty) \to [1, \infty)$ by

(1)
$$f(t) = \begin{cases} 1 & \text{if } t = 0, \\ t & \text{coth}(t) & \text{if } t > 0. \end{cases}$$

THEOREM. For p < n, let M be a complete n-dimensional Riemannian submanifold in a (n+p)-dimensional complete simply connected Riemannian manifold \overline{M} whose sectional curvature satisfies $a \le K_{\overline{M}} \le b \le 0$. If M is contained in a geodesic ball of radius λ and the scalar curvature of M has a lower bound, then the sectional curvature K_M of M satisfies $\sup K_M \ge a + \lambda^{-2} \{f(\sqrt{-b} \lambda)\}^2$.

The author sincerely thanks Professor S. Tanno for valuable suggestions.

2. Proof of Theorem. We denote the Riemannian metric on \overline{M} (resp. M) by \langle , \rangle (resp. \langle , \rangle), the Riemannian connection by $\overline{\nabla}$ (resp. ∇), the Riemannian curvature tensor by \overline{R} (resp. R) and the second fundamental form with respect to the immersion $M \subset \overline{M}$ by α .

Since the scalar curvature of M has a lower bound, we may assume $\inf K_M > -\infty$. Let d be the distance function on \overline{M} and choose a point $\overline{o} \in \overline{M}$ such that $d(\overline{o}, x) \le \lambda$ for all $x \in M$. We define a smooth function $F: M \to R$ by $F(x) = \{d(\overline{o}, x)\}^2/2$. Then by [4, Theorem A'] there exists a sequence $\{x_k\}_{k=1}^{\infty}$ in M such that

(2)
$$\|\operatorname{grad} F(x_k)\| < k^{-1},$$

Received by the editors December 4, 1980. 1980 Mathematics Subject Classification. Primary 53C40; Secondary 53C20.

(3)
$$\nabla^2 F(X, X) < k^{-1} \text{ for all unit vectors } X \in T_{x_*} M,$$

(4)
$$\lim_{k \to \infty} F(x_k) = \sup F,$$

where $\nabla^2 F$ denotes the Hessian of F with respect to the Riemannian metric on M.

LEMMA 1. Let γ : $[0, 1] \to \overline{M}$ be a geodesic in \overline{M} such that $\gamma(0) = \overline{o}$ and $\gamma(1) \in M$. Then

$$\nabla^{2}F(X,X) \geqslant \langle \alpha(X,X), \dot{\gamma}(1) \rangle + L^{-2}\langle X, \dot{\gamma}(1) \rangle^{2}$$

+
$$(\|X\|^{2} - L^{-2}\langle X, \dot{\gamma}(1) \rangle^{2})f(\sqrt{-b} L),$$

for all vectors X tangent to M at $\gamma(1)$, where L is the length of γ .

PROOF. Let c(s) be the geodesic in M such that $\dot{c}(0) = X$ and let γ_s : $[0, 1] \to \overline{M}$ be the geodesic such that $\gamma_s(0) = \overline{0}$ and $\gamma_s(1) = c(s)$. Then we have $\nabla^2 F(X, X) = F(c(s))''|_{s=0} = E(\gamma_s)''|_{s=0}$, where $E(\gamma_s)$ is the energy of γ_s defined by $E(\gamma_s) = \int_0^1 \langle \dot{\gamma}_s, \dot{\gamma}_s \rangle /2$. Let V be the variation vector field along γ with respect to the variation $\{\gamma_s\}$. Then a calculation shows that

$$E(\gamma_s)''|_{s=0} = \langle \alpha(X, X), \dot{\gamma}(1) \rangle + I(V, V),$$

where $I(V,V)=\int_0^1 \{\langle \overline{\nabla}_{\dot{\gamma}} V, \overline{\nabla}_{\dot{\gamma}} V \rangle + \langle \overline{R}(\dot{\gamma},V)\dot{\gamma},V \rangle\}$. Let \tilde{M} be the (n+p)-dimensional space form with constant curvature b and let $\sigma\colon [0,1]\to \tilde{M}$ be a geodesic with length L. We construct a vector field W along σ such that $\|V\|=\|W\|, \|\overline{\nabla}_{\dot{\gamma}} V\| = \|\widetilde{\nabla}_{\dot{\sigma}} W\|$ and $\langle V,\dot{\gamma}\rangle = \langle W,\dot{\sigma}\rangle$, where \widetilde{V} is the Riemannian connection with respect to the Riemannian metric $\langle \ , \ \rangle$ on \tilde{M} . Then $K_{\overline{M}} < b$ implies $I(V,V) \geqslant I(W,W)$. Let J be the Jacobi field along σ determined by J(0)=0 and J(1)=W(1). Then [2, First lemma, p. 24] implies $I(W,W)\geqslant I(J,J)$. Let U be the parallel vector field along σ determined by $U(1)=J(1)-L^{-2}\langle J(1),\dot{\sigma}(1)\rangle\dot{\sigma}(1)$, and let $g\colon [0,1]\to R$ be the solution of $g''+bL^2g=0$ determined by g(0)=0 and g(1)=1. Then we have $J(t)=g(t)U(t)+\{L^{-2}\langle J(1),\dot{\sigma}(1)\rangle t\}\dot{\sigma}(t)$ and $g'(1)=f(\sqrt{-b}L)$. Hence we see that $I(J,J)=\langle\widetilde{\nabla}_{\dot{\sigma}}J,J\rangle|_{t=1}=g'(1)\|U(1)\|^2+L^{-2}\langle J(1),\dot{\sigma}(1)\rangle^2=f(\sqrt{-b}L)(\|X\|^2-L^{-2}\langle X,\dot{\gamma}(1)\rangle^2)+L^{-2}\langle X,\dot{\gamma}(1)\rangle^2$. Q.E.D.

Let γ_k : $[0, 1] \to \overline{M}$ be the geodesic such that $\gamma_k(0) = \overline{o}$ and $\gamma_k(1) = x_k$, and let λ_k be the length of γ_k . We set $\lambda_{\infty} = \sup\{d(\overline{o}, x) | x \in M\}$, then (4) implies $\lim_{k \to \infty} \lambda_k = \lambda_{\infty} > 0$. Therefore we may assume $\lambda_k > 0$ for all k. Let X be a unit vector in $T_k M$. Then by (3) and Lemma 1 we have

$$k^{-1} > \langle \alpha(X, X), \dot{\gamma}_k(1) \rangle - \lambda_k^{-2} \langle X, \dot{\gamma}_k(1) \rangle^2 \{ f(\sqrt{-b} \lambda_k) - 1 \} + f(\sqrt{-b} \lambda_k).$$

Since $\langle X, \dot{\gamma}_k(1) \rangle = \langle X, \text{ grad } F(x_k) \rangle$, (2) implies $\langle X, \dot{\gamma}_k(1) \rangle^2 < k^{-2}$. Hence we have

(5)
$$\|\alpha(X,X)\| > \left\{ f\left(\sqrt{-b} \lambda_k\right) - A_k \right\} / \lambda_k$$

for all unit vectors $X \in T_{x_k}M$, where $A_k = k^{-1} + k^{-2}\lambda_k^{-2}\{f(\sqrt{-b}\lambda_k) - 1\}$. Since $\lim_{k\to\infty}\{f(\sqrt{-b}\lambda_k) - A_k\} = f(\sqrt{-b}\lambda_\infty) > 1$, we may assume $f(\sqrt{-b}\lambda_k) - A_k > 0$ for all k. Hence (5) implies $\alpha(X, X) \neq 0$ for all nonzero vectors $X \in T_{x_k}M$. Now we recall the following lemma [3, p. 28].

LEMMA 2. Let $\alpha: R^n \times R^n \to R^p$ be symmetric bilinear and satisfy $\alpha(X, X) \neq 0$ for all nonzero $X \in R^n$. If p < n, there exist linearly independent vectors $X, Y \in R^n$ such that $\alpha(X, Y) = 0$, $\alpha(X, X) = \alpha(Y, Y)$.

By Lemma 2 there exist linearly independent vectors X_k , Y_k in $T_{x_k}M$ such that $\alpha(X_k, Y_k) = 0$, $\alpha(X_k, X_k) = \alpha(Y_k, Y_k)$. Hence by the Gauss equation, we have $\langle R(X_k, Y_k) Y_k, X_k \rangle = \langle \overline{R}(X_k, Y_k) Y_k, X_k \rangle + \|\alpha(X_k, X_k)\| \cdot \|\alpha(Y_k, Y_k)\|$. Let $\overline{K}(X_k, Y_k)$ (resp. $K(X_k, Y_k)$) be the sectional curvature of \overline{M} (resp. M) for the plane spanned by X_k and Y_k . Then by (5) we see that

$$K(X_{k}, Y_{k}) = \overline{K}(X_{k}, Y_{k}) + \|\alpha(X_{k}, X_{k})\|$$

$$\cdot \|\alpha(Y_{k}, Y_{k})\| (\|X_{k}\|^{2} \|Y_{k}\|^{2} - \langle X_{k}, Y_{k} \rangle^{2})^{-1}$$

$$\geq a + \|\alpha(X_{k}, X_{k})\| \cdot \|\alpha(Y_{k}, Y_{k})\| \cdot \|X_{k}\|^{-2} \|Y_{k}\|^{-2}$$

$$\geq a + \lambda_{k}^{-2} \{f(\sqrt{-b} \lambda_{k}) - A_{k}\}^{2}.$$

Letting k go to infinity, we have $\sup K_M > a + \lambda_{\infty}^{-2} \{f(\sqrt{-b} \lambda_{\infty})\}^2$. Since $\lambda_{\infty} < \lambda$ and the function $t \mapsto t^{-2} \{f(\sqrt{-b} t)\}^2$ is decreasing, we have $\sup K_M > a + \lambda^{-2} \{f(\sqrt{-b} \lambda)\}^2$. This completes the proof of the theorem.

REFERENCES

- 1. C. Baikousis and T. Koufogiorgos, *Isometric immersions of complete Riemannian manifolds into Euclidean space*, Proc. Amer. Math. Soc. 79 (1980), 87-88.
- 2. J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam,
- 3. S. Kobayashi and K. Nomizu, Foundation of differential geometry, Vol. II, Interscience, New York, 1967.
 - 4. H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.

 MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY, SENDAI, 980 JAPAN