PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 83, Number 3, November 1981

CURVATURE ESTIMATES FOR COMPLETE
AND BOUNDED SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD

YOSHIHISA KITAGAWA

ABSTRACT. Let M be a complete n-dimensional submanifold in the (2n — 1)-
dimensional Euclidean space, with scalar curvature bounded from below. Baikousis
and Koufogiorgos proved that the sectional curvature of M satisfies sup K,, > A2
if M is contained in a ball of radius A. We extend this result to the case that the
ambient space is a complete simply connected Riemannian manifold of nonpositive
curvature.

1. Introduction. For p <n, let M be a complete n-dimensional Riemannian
submanifold in the (n + p)-dimensional Euclidean space E”*?. Under the assump-
tion that the scalar curvature of M has a lower bound, Baikousis and Koufogiorgos
[1] proved that if M is contained in a ball of radius A, then the sectional curvature
K,, of M satisfies sup K,, > A2 In this note we obtain a natural extension of the
above inequality when the ambient space is a complete simply connected (n + p)-
dimensional Riemannian manifold of nonpositive curvature. To state our result, we
introduce a continuous function f: [0, o) —[1, o0) by

1 ift=0,
M o) = { t coth() if 1 > 0.

THEOREM. For p < n, let M be a complete n-dimensional Riemannian submanifold
in a (n + p)-dimensional complete simply connected Riemannian manifold M whose
sectional curvature satisfies a < Ky; < b < 0. If M is contained in a geodesic ball of
radius A and the scalar curvature of M has a lower bound, then the sectional curvature
K,, of M satisfies sup K,, > a + \"2{ f(V-b N))2.

The author sincerely thanks Professor S. Tanno for valuable suggestions.

2. Proof of Theorem. We denote the Riemannian metric on M (resp. M) by (, >
(resp. { , ), the Riemannian connection by V (resp. V), the Riemannian curvature
tensor by R (resp. R) and the second fundamental form with respect to the
immersion M C M by a.

Since the scalar curvature of M has a lower bound, we may assume inf K,, >
—o0. Let d be the distance function on M and choose a point 3 € M such that
d(o, x) < A for all x € M. We define a smooth function F: M — R by F(x) =
{d(0, x)}*/2. Then by [4, Theorem A’] there exists a sequence {x, }%~, in M such
that
) ligrad F(x )l < k7,
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3) V2F(X, X) < k™ for all unit vectors X € T, M,
@) lim F(x,) =sup F,
k—o0
where VF denotes the Hessian of F with respect to the Riemannian metric on M.

LEMMA 1. Let v: [0, 1] —> M be a geodesic in M such that y(0) = & and y(1) € M.
Then

VZE(X, X) > (X, X), (1)) + LXX, (1))
+ (IX]1? = L7XX, y(1)>)AV-b L),
for all vectors X tangent to M at y(1), where L is the length of .

PrOOF. Let ¢(s) be the geodesic in M such that ¢(0) = X and let v,: [0, 1] - M
be the geodesic such that v,(0) = 0 and y,(1) = c(s). Then we have V2F(X, X) =
F(c(5))"|sm0 = E(Ys)"|s=q Where E(y,) is the energy of y, defined by E(y,) =
J&l¥ss ¥s0 /2. Let V be the variation vector field along y with respect to the
variation {v,}. Then a calculation shows that

E(Y,)"|sm0 = <a(X, X), v(1)> + I(V, V),

where I(V, V) = f°{<V v, V. Vo + (R(¥, V)Y, VD). Let M be the (n + p)
dimensional space form w1th constant curvature b and let o: [0, 1] > M be a
geodesic with length L. We construct a vector field W along o such that ||V| =
1, ]|V Vi =V, W| and <V, y) = (W, 6), where ¥ is the Riemannian con-
nection with respect to the Riemannian metric ( , ) on M. Then K;; < b implies
I(V, V) > I(W, W). Let J be the Jacobi field along o determined by J(0) = 0 and
J(1) = W(1). Then [2, First lemma, p. 24] implies I(W, W) > I(J, J). Let U be the
parallel vector field along o determined by U(1) = J(1) — L72¢J(1), 6(1)>é(1), and
let g: [0, 1] > R be the solution of g” + bL% = 0 determined by g(0) = 0 and
g(1) = 1. Then we have J(1) = g()U(¢) + {L7J(1), 6(1)>t}6(r) and

g'(1) = f(V—=b L). Hence we see that I(J,J) =<V ,J,J>|,_, = gD UQ)|*> +

L), 6(1))* = fAV-b LYIX | — L7XX, y(1))) + LX, ¥(1))>. QED.

Let v,: [0, 1] > M be the geodesic such that v,(0) = 6 and y,(1) = x;, and let A,
be the length of y,. We set A, = sup{d(0, x)|x € M}, then (4) implies lim,_, , A,
= A, > 0. Therefore we may assume A, > O for all k. Let X be a unit vector in
T, M. Then by (3) and Lemma 1 we have

k' > (a(X, X), (1)) = NXX, (D) AV=-bN) — 1} + (V-b A).
Since <X, 1,(1)> = <X, grad F(x,)), (2) implies <X, v,(1)>* < k2. Hence we have
(5) la(X, X)Il > {AV-bN) — A} /N
for all unit vectors X € T, M, where 4, = k™' + kAZ{f(V-b \,) — 1}. Since
lim, ,_{A(V-bX\)— 4} = f(\/_ b A,) > 1, we may assume f(V-b A,) — 4, >0

for all k. Hence (5) implies a(X, X) # 0 for all nonzero vectors X € T, M. Now
we recall the following lemma [3, p. 28].

LeMMA 2. Let a: R" X R" — RP be symmetric bilinear and satisfy a(X, X)# 0
for all nonzero X € R". If p < n, there exist linearly independent vectors X, Y € R"
such that a(X, Y) =0, a(X, X) = a(Y, Y).
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By Lemma 2 there exist linearly independent vectors X, Y, in T, M such that
a(Xy, Y) =0, a(X,, X;) = a(Y,, Y,). Hence by the Gauss equation, we have
(RXe» Y)Y, X = Ry Y)Y X + lla(Xyo XDl - (Y Yl Let
K(X,, Y,) (resp. K(X,, Y,)) be the sectional curvature of M (resp. M) for the plane
spanned by X, and Y,. Then by (5) we see that

K(X,, Y,) = K(X,, Y;) + |la(X,, X )|

-1
NV YOUIX Pl Yill? = {Xp» Y, 2?)
> a + ||a(Xp, X - lla(Ye YOI - 1 X172 Yl

>a + N2 AVTBA) — 4,

Letting k go to infinity, we have sup K,, > a + AZ2{f(V-bA_)}>. Since
A, < A and the function ¢ > ¢72{ f(V-b t)}? is decreasing, we have sup K, > a +
A2{ f(V-b N)}*. This completes the proof of the theorem.
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