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CURVATURE ESTIMATES FOR COMPLETE

AND BOUNDED SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD

YOSHIHISA KITAGAWA

Abstract. Let M be a complete «-dimensional submanifold in the (2n — 1)-

dimensional Euclidean space, with scalar curvature bounded from below. Baikousis

and Koufogiorgos proved that the sectional curvature of M satisfies sup KM > \'2

if M is contained in a ball of radius X. We extend this result to the case that the

ambient space is a complete simply connected Riemannian manifold of nonpositive

curvature.

1. Introduction. For p < n, let M be a complete «-dimensional Riemannian

submanifold in the (n + /?)-dimensional Euclidean space E"+p. Under the assump-

tion that the scalar curvature of M has a lower bound, Baikousis and Koufogiorgos

[1] proved that if M is contained in a ball of radius A, then the sectional curvature

KM of M satisfies sup KM > A-2. In this note we obtain a natural extension of the

above inequality when the ambient space is a complete simply connected (n + p)-

dimensional Riemannian manifold of nonpositive curvature. To state our result, we

introduce a continuous function/: [0, oo) —> [1, oo) by

( i   if / = n
(1) /(') =

1   if t = 0,

í coth(/)   if / > 0.

Theorem. For p < n, let M be a complete n-dimensional Riemannian submanifold

in a (n + p)-dimensional complete simply connected Riemannian manifold M whose

sectional curvature satisfies a < Kjçj < b < 0. If M is contained in a geodesic ball of

radius A and the scalar curvature of M has a lower bound, then the sectional curvature

KM of M satisfies sup KM > a + \~2{f(V^b A)}2.

The author sincerely thanks Professor S. Tanno for valuable suggestions.

2. Proof of Theorem. We denote the Riemannian metric on M (resp. M) by < , >

(resp. < , )), the Riemannian connection by V (resp. V), the Riemannian curvature

tensor by R (resp. R) and the second fundamental form with respect to the

immersion M c M by a.

Since the scalar curvature of M has a lower bound, we may assume inf KM >

-oo. Let d be the distance function on M and choose a point 5 E M such that

d(5, x) < A for all x E M. We define a smooth function F: M —» R by F(x) =

{d(d, x)}2/2. Then by [4, Theorem A'] there exists a sequence {**}*°-i in M such

that

(2) Hgrad F(xk)\\ < k~\

Received by the editors December 4, 1980.

1980 Mathematics Subject Classification. Primary 53C40; Secondary 53C20.

© 1981 American Mathematical Society

0002-9939/81/0000-0531/$01.75

579



580 YOSHimSA KITAGAWA

(3) V2F(X, X) < k~l    for all unit vectors X E TXM,

(4) lim  F(xk) = sup F,
fc—»oo

where V2F denotes the Hessian of F with respect to the Riemannian metric on M.

Lemma 1. Let y: [0, 1] -» M be a geodesic in M such that y(0) = 5 and y(\) G M.

Then

V2F(X, X) > <«(*, X), y(l)> + L-\X, y(1)>2

-r-(||X||2-L-2<^,y(l)>2)/(V^L),

for all vectors X tangent to M at 7(1), where L is the length of ' y.

Proof. Let c(s) be the geodesic in M such that c(0) = X and let ys: [0, 1] -» M

be the geodesic such that 7,(0) = Ö and y,(l) = c(s). Then we have V2F(X, X) =

F(c(s))"\s_0 = F(7j)"|i»o> where E(ys) is the energy of 7, defined by E(ys) =

/o^Yi' Y,)/2. Let F be the variation vector field along 7 with respect to the

variation {7,}. Then a calculation shows that

*(y.n.-o = <«(*. n f(i» + nv. n
where 7(F, K) = /¿«V^K, V^F) + <*(y, V)y, Vs)}. Let M be the (n + />)-

dimensional space form with constant curvature b and let o: [0, 1] —* M be a

geodesic with length L. We construct a vector field IF along o such that || V\\ =

|| if |j, ||V^F|| = ||V¿»f || and <K, 7) = <W, à>, where V is the Riemannian con-

nection with respect to the Riemannian metric < , > on M. Then K^ < b implies

7( V, V) > I( W, W). Let J be the Jacobi field along o determined by 7(0) = 0 and

7(1) = w(\). Then [2, First lemma, p. 24] implies I(W, W) > 7(7, J). Let U be the

parallel vector field along o determined by U(l) = J(l) - L~\j(\), ó(l)>ó(l), and

let g: [0, 1] -> R be the solution of g" + bL2g = 0 determined by g(0) = 0 and

g(\) = 1. Then we have J(t) = g(t)U(t) + {L~2(J(l), ó(l)}t}ó(t) and

g'(\) = j\V-b L). Hence we see that I(J,J) = (VaJ,J}\,_l = g'(l)\\U(l)\\2 +

L-\J(\), á(l)>2 = f\V^b L)(\\X\\2 - L-\X, 7(1)>2) + L-\X, 7(1)>2.    Q.E.D.
Let yk: [0, 1] —> M be the geodesic such that 7^(0) = o and 7^(1) = xk, and let \k

be the length of 7*. We set A^, = sup{i/(o, x)\x E M), then (4) implies lim^^ \k

= A^, > 0. Therefore we may assume \k > 0 for all k. Let X be a unit vector in

Tx M. Then by (3) and Lemma 1 we have

AT1 > (a(X,X), Yk(l)> - A,-2<*, yk(l)y{f(V^b\k) - 1} + j\V^b \k).

Since {X, yk(\))> = (X, grad F(xk)}, (2) implies <Ar, 7*(1)>2 < k~2. Hence we have

(5) ||a(A\ *)ll > [f[V^b Xk) - Ak}/\

for all unit vectors X E TXM, where Ak = A:"1 + k~\2{f(V^b \k) - 1). Since

lim^/tV^ A*) - ,4*} = /(V=6 A J > 1, we may assume f(\Tb Xk) - Ak > 0
for all £. Hence (5) implies a(X, X) ¥= 0 for all nonzero vectors X E T^M. Now

we recall the following lemma [3, p. 28].

Lemma 2. Let a: R" X R" -» Rp be symmetric bilinear and satisfy a(X, X)=£0

for all nonzero X E R". If p < n, there exist linearly independent vectors X, Y E R"

such that a(X, Y) = 0, a(X, X) = a(Y, Y).
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By Lemma 2 there exist linearly independent vectors Xk, Yk in TXM such that

a(Xk, Yk) = 0, a(Xk, Xk) = a(Yk, Yk). Hence by the Gauss equation, we have

i_R(Xk, Yk)Yk, Xky = (R(Xk, Yk)Yk, Xk} + \\a(Xk, X¿\\ • \\a(Yk, Yk)\\. Let

K(Xk, Yk) (resp. K(Xk, Yk)) be the sectional curvature of M (resp. M) for the plane

spanned by Xk and Yk. Then by (5) we see that

K(Xk, Yk) = K(Xk, Yk) + \\a(Xk, Xk)\\

■\\ot(Yk, Yk)\\(\\xk\\2\\Yk\\2 - (xk, Ykyyl

>a + \\a(Xk, Xk)\\ ■ \\a(Yk, Yk)\\ ■ \\Xk\\-2\\ Yk\\~2

>a + Xk2{f{V^bXk)-Ak}2.

Letting k go to infinity, we have sup KM > a + A¿{/(V^e A^)}2. Since

Xx < A and the function / h» t~2{f(V^b t)}2 is decreasing, we have sup KM > a +

X~2{f(V^b A)}2. This completes the proof of the theorem.

References

1. C. Baikousis and T. Koufogiorgos, Isometric immersions of complete Riemannian manifolds into

Euclidean space, Proc. Amer. Math. Soc. 79 (1980), 87-88.

2. J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdam,

1975.
3. S. Kobayashi and K. Nomizu, Foundation of differential geometry, Vol. II, Interscience, New York,

1967.
4. H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.

Mathematical Institute, Tôhoku University, Sendai, 980 Japan


