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SELECTIONS AND ORDERABUJTY

JAN VAN MILL AND EVERT WATTEL

Abstract. Let X be a compact Hausdorff space. Then X has a selection if and

only if X is orderable.

0. Introduction. Let I be a compact Hausdorff space and let 2X denote the

hyperspace of nonempty closed subsets of X. A selection for A1 is a continuous map

F: 2X -+ X such that F(A) E A for all A E 2X. Let X(2) denote the 2-fold

symmetric product of X, i.e. the subspace of 2X consisting of all nonempty closed

subspaces of X containing at most two points. A weak selection for X is a

continuous map s: X(2) —» X such that s(A) E A for all A E X(2). It is easy to see

that X has a weak selection if and only if there is a continuous map s: X2 —» X

such that for all x, y EX,

(1) s(x, y) = s(y, x), and

(2)s(x,y) E {x,y}.

Such a map s: X2 —» X will also be called a weak selection.

Michael [M] showed that for a continuum X the following statements are

equivalent: (a) X has a selection, (b) X has a weak selection, and (c) X is orderable.

In [Y], Young claims, without giving a proof, that statements (a), (b), and (c) are

also equivalent for compact zero-dimensional spaces X. In this paper we will show

that, for compacta, statements (a), (b), and (c) are always equivalent.

1. The construction. Let X be compact and let s: X2 -» X be a weak selection.

For each x E X define

and

Bx = {yEX\s(y,x)= y),

Ax = { y E X | s(y, x) = x).

Observe that both Ax and Bx are closed, that Ax u Bx = X and that Ax n Bx =

1.1. Theorem. Let X be a compact space.  Then the following statements are

equivalent:

(a) X is orderable,

(b) X has a weak selection,

(c) X has a selection.
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Proof. The implication (c) => (b) is trivial and the implication (a) => (c) is well

known. Indeed, simply define F: 2X -» X by F(A) = min(^). An easy check shows

that F is a selection. It therefore suffices to prove that (b) => (a). To this end, let s:

X2 —» X be a weak selection for X and, for each x E X, let Ax and Bx be defined as

above. Let < be a wellordering on X. For every x E X we will construct closed

sets Lx, UXE X such that

(1) Lx u t/, = X and L, n t/x = {*},

(2) if y «< x and if x G L\ then Lx e Iy\ { v},

(3) if y < x and if x E Uy then Ux e Uy\ {y},

(4) if z E Lx and if z £ U {L, | y < x & x E Uy} then z G Bx,

(5) if z G Í4 and if z Ö U { i/^, | V -< x & x G L,} then z E Ax.

(In the total ordering on X which we will construct in this proof, Lx will be the

set of all points smaller than or equal to x, and Ux will be the set of all points larger

than or equal to jc.)

Let x0 be the first element of X and define Lr = Br and Ur = Ar. Assume that

we have defined Ly and Uy for all y -< x satisfying (1) through (5). Let E = {y <

x | x G ly) and F = {y < x | x G Uy). Put

Z= X\(\J IyU   U  Uy).
\yeE ye.F        '

Let k = \E\ and for each £ < k define points v£ S F in the following way:

(6) v0 = min(F),

(7) yf = min[{x} u { y E E\ (y, < y for all fi < ?) & (y G lju<f lyj}]. Let

£ < k be the first ordinal for which yè = x.

Claim 1. If £o < ¿then U{L, |y G F&y ^ y&} = UM<io V
Take y G {z G F | z -< yio} \{yll\ ¡i < £0) and let /t < £0 be the first ordinal for

which y «< yß. Since yp -< v for all p < /x (notice that ¡x =£ 0) and since y ^y,,, by

(7),y G U p<u 7^. Choose p < ju. such thaty G 7^. SinceyD «< y, by (2),

ly C 4 C   U ly.
«<£o

C/atw 2. If /to < ju, < | then 7^ c ¿^ \ {yßi}.

By  (7), y^, £ L^ •  Consequently, y¿ G Uy^ and  therefore,  by  (3),   Uy^ c

^,. N (yJ- Consequently/by (1), L^ E ¡^ \°{^}.

Ctem 3. If #!„ < i*i < í then 7^ \ L,   c 4^.
Take t E L,  \ L, . Since f G £/„   and, by (5),

we may assume, without loss of generality that / G Í/, for certain z -< y^ with

y E 4; we will reach a contradiction. Assume thatyMi G Lz. Since y^ -< y(li and

since z -< y this implies by (2), that L, c Lz \ {z}. Consequently, / G Lz \ {z}

and i G £4, contradicting (1). This shows that yMi G L¿ which imphes that yfl| G

Uz. Since z -< y , by (3), Uy E Uz and therefore x G í/z. If also x E Lz then

x = z which is impossible since z < x. We conclude that x Î Lz or equivalently,
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z E E. Let e < juo be the smallest ordinal such that z < ye. Since ys < z for every

S < e by (7), either z = ye or z G ly> for certain S < e. If z = ye theny^ G Zj, which

contradicts z < y^ (Claim 2). Therefore, z G L^ for certain ô < e. Then z G L^ C

L,,  \ {y^o}. Since z -< y^ and since y^ G Lz, by (2), we also have that

•'MO

which implies that z E Iy   cLz\{z},a contradiction.

Claim 4. If / G Cl^Lle^Z^,) \ UyeEIy then / is a cluster point of the net

{y, I m < !}•
Suppose not and take a closed neighborhood C of / which misses

Clxiy, | it < I}.

From Claim 1 it is clear that there is a cofinal subset G c £ with the property that

for each it G G there exists a point c^ G C n Iy such that

M = min{S<£|c/1G7>e}.

Take ii G G. We claim that cM G By . If not, then by (4) there is ay -< y such that

cßE Iy and yM G £/,. Since y-< y^ and yM G Uy, by (3), Uy^EUy\ {y} which

implies that ly e Iy . Consequently, x G 7^,, since x G L,,, or equivalently, y G E.

By Claim 1 we can find S < it such that c^ E Iy, which is a contradiction since

H = min{5 < £ | cM G 7^}. This implies that for all it E G we have that s^^y^) =

¿V
Let (c,y) be a cluster point of the net {(c^y,,)},,^. Then c G C andy £ C, and

since ¿(t^, y ) = c^ G C for all it G G it is clear that s(c, y) = c. Next take ju G G

arbitrarily. For all ô > /x we have by Claim 3 that s(yll, cs) = y^. Hence s(c, yj =

^OV» c) — yM- This would imply that s(c,y) = y, and sincey ¥== c this is a contradic-

tion.

Claim 5. If both t and u are cluster points of the net {yM | ii < £} then t = u.

Let C and 7) be closed and disjoint neighborhoods of, respectively, / and u.

There is clearly a cofinal subset Gel and for each it G G points

c„ G C n {yx | A < £}    and   «/„ G 7) n {yj A < 1}

such that if ii, S G G and it < S then

<V < dn < cs-

Let (f', u') be a cluster point of the net {(cM, rf|1)}(ieC, then /' G C and u' G D. By

Claim 3, j(cm, </J = cM and consequently, s(w', f') = r*. Fix it G G. For each 5 > ju

it is clear that s(d/l, cs) = </M (Claim 3). Since t' E Clx{cs \ S > it} this implies that

s(dß, f) = 4,.

Since (w', /') G Clj^^, OI/tGC} this implies that s(u', t') = w'. Since u' ¥* t',

this is a contradiction.

C/a/'/M 6. U^ef Iy has at most one boundary point.

Follows immediately from Claims 4 and 5.

Claim 7. If / G Z and u < £ then t E A„.
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Since t G Iy clearly t E Uy . T. erefore by (5), if t G Ay then t G Uy for certain

y <■ y^ withy^ G Iy. If x G Iy then x G c/, since x #y in which case Z f) Uy =

0 which contradicts / G Z n c^,. Therefore y G F. By Claim 1

U {Ly\yEE&y<ylx}= \J  Ly>.
S<fi

Therefore y  G Iy for certain S < p which contradicts (7).

Formally we have to consider two cases, namely that £ is a successor or that £ is

a limit ordinal. Those two cases can be treated analogously and since the case that

£ is a limit is more complicated we will assume from now on that £ is a limit.

Since Iy \ {y^} is open for each it < £, by Claims 1 and 2, UySE Iy must have a

limit point, say a, and by Claim 6 we see that a is unique. By using precisely the

same technique as above and again restricting our attention to the limit case we

can find a limit ordinal tj and for each it < tj a point z   G F such that

(8) if p < S then Uz c UZe,

(9) UM<, UZf = (Jyef- Uy, and

(10) if / G Z and p < tj then t E Bz.

Again we find that \Jy£F Uy has a unique boundary point, say b, and that this

point is a cluster point of the net {z^ | it < tj}.

(Note that, by (1), (2) and (3), y G F andy' G F implies that Iy n Uy. = 0.)

Case 1. a = b. We then claim that Z = {x} = {a} = {b}. For assume that

/ G Z. By Claim 7, s(y , t) = yM for all it < £ and consequently s(a, t) = a since a

is a limit point of {y/J}>l<{. On the other hand, by (10), s(t, zM) = t for all p. < tj. By

the same argument s(t, a) = s(t, b) = t. Hence t = a.

We therefore conclude that a = b = x and that Z = {x}. Now define

¿,=  U4UW    and    Í7, =  U Uy u {x}.

An easy check shows that our inductive hypotheses are satisfied.

Case 2. a =£ b and x G {a, 6}. Define Lx = U,^ Lu(Zfl 5J and (/, =

UyeF Uy u (Z n ^x). Observe that both Lx and Ux are closed since a E Z C\ Bx

and ¿> G Z n Ax. Again an easy check shows that our inductive hypotheses are

satisfied.

Caye 3. x = a and a ¥= b. Define Lx = L)y<SE ly U {x} and Ux = D ,,<f Uy .

Case 4. x = b and a ¥= b. Similar to Case 3.

Now define x < y iff x G Iy. Then < is a linear order which generates the

topology of X since X is compact and since for each x G X the sets {y G X \ y <

x} and {y E X \ x < y} are closed.

2. Notes. A space A1 is called weakly orderable (abbreviated KOTS) provided

that there is a linear order < on X such that for each y G X the sets {x G X | x <

y} and {xGX|y <x) are both closed. It is easily seen that whenever A" is a

KOTS then the function s: X2 ^> X defined by s(x,y) = min{x,y} is a weak

selection. This suggests the following question:
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Question. Let A" be a space. Is A" a KOTS if and only if X admits a weak

selection?

The technique used in the proof of our theorem is not applicable to answer this

question since certain transfinite sequences of points need not have limit points.
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