
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 83, Number 3, November 1981

SPACES OF AANR'S

ZVONKO CERIN

Abstract. For a metric space X, let AANR^A") denote the hyperspace of all

nonempty approximative absolute neighborhood retracts in the sense of Clapp in X

topologized with the metric of continuity. We show that AAHV^X) is topologi-

cally complete iff X is topologically complete. Some subsets of the first Baire

category in AANRc^) for a ¿»-manifold X are identified. For example, the

collection AANRN(-¥) of all nonempty approximative absolute neighborhood

retracts in the sense of Noguchi in A' is such a subset.

Introduction. In 1953 Noguchi [N] introduced a generalization of the notion of an

absolute neighborhood retract (ANR) which is now called an approximative

absolute neighborhood retract in the sense of Noguchi (AANRN). A further

generalization was given in 1971 by Clapp [C] and is now known as an approxima-

tive absolute neighborhood retract in the sense of Clapp (AANRc). The impor-

tance of these generalizations is that they share many properties with ANR's (for

example, certain fixed point properties). On the other side, they include compacta

with local pathologies.

Recently, several authors studied AANRç's using techniques of shape theory. In

particular, Borsuk [B2] described them as NE-se\s, Mardesic [M] characterized

them as approximate polyhedra, and the author [C2] observed that AANRç's

coincide with P-e-movable compacta, where P denotes the class of all finite

polyhedra.

The main results of this paper, described in the above abstract, are obtained in

the following way. First we define the notion of a P-e-movably regular conver-

gence for compacta in a metric space A. The limit of a P-e-movably regularly

convergent sequence must be P-e-movable (i.e., an AANR^ so that a sequence

{A„} in AANRC(A) converges P-e-movably regularly to A0 E AANR^A) iff

lim dc(An, A0) = 0, where dc is Borsuk's metric of continuity [Bl]. Then we apply

the method of investigating topological properties of the hyperspace of all P-mova-

ble compacta in A with the topology induced by P-movably regular convergence

from [Cl] to AANR^A) using P-e-movably regular convergence. Hence, in

essence, our proof of the statement about topological completeness relies on Begle's

method in [Be].
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We assume that the reader is familiar with the theory of shape [B3] and with the

infinite-dimensional topology [Ch].

Throughout the paper P will denote the class of all finite polyhedra. A map will

be called a P-map provided its domain is a member of P.

We shall say that maps /and g of a space Z into a metric space (A, d) are e-close

provided d(f(z), g(z)) < e for every z G Z. If Z is a subset of A and/ is e-close to

the inclusion izx of Z into A, we call / an e-map. For compacta A and B in X

define dc(A, B) = inf (e|3 e-maps A -^ B and B —» A }.

If not stated otherwise, we reserve A for an arbitrary metric space with a fixed

metric d; A0,AX, A2, . . . are compact subsets of A; dH is the Hausdorff metric and

dc is the metric of continuity (defined above) on the hyperspace 2X of all nonempty

compacta in A; M is an ANR for the class of all metrizable spaces which contains

X metrically; a neighborhood means an open neighborhood; and Ne(A0) denotes

the e-neighborhood of A0 in M.

2. P-e-movably regular convergence. Recall [C] that a compactum A is an

AANR,- provided for every embedding of A into a metric space A and every e > 0,

there is a neighborhood V of A in A and a map r: F—» A such that the restriction

r\A is an e-map. We proved in [C2] that a compactum A is an AANRç. iff A is

P-e-movable, i.e., iff for some (and hence for every) embedding of A into an ANR

M the following holds. For each e > 0 there is a neighborhood V of A in M such

that every P-map f: K-» V is e-close to a map/': K^> A.

(2.1) Definition. A sequence Ax, A2, . . . of compacta in a metric space A which

lies in an ANR M is said to converge P-e-movably regularly in M to a compactum

A0in X provided

(i) lim dH(An, A¿) = 0, and

(ii) for every e > 0 there is a neighborhood V of A0 in M and an index k0 such

that for every P-map f: AT—> K and every k > k0, there is a map/': AT—» Ak which

is e-close to/.

The definition (2.1) is shape theoretic in the sense that P-e-movably regular

convergence is independent of the choice of M. If a sequence {An) of compacta in

X converges P-e-movably regulary to a compactum AQ in A in some (and hence in

every) ANR containing A we shall write A„ — mol -» Ar~

(2.2) Lemma. Let An — mop —» A0. Then A0 is P-e-movable regardless of the nature

ofA„'s.

Proof. Let an e > 0 be given. By [C2], it suffices to prove that there exists a

neighborhood V of A0 in M such that for every P-map /: AT—» F and every

neighborhood W of A0 in M, there is a map/': K —» W which is e-close to/. This

property will have any neighborhood V of A0 in M satisfying (ii) in (2.1). Indeed, if

W is an arbitrary neighborhood of A0 in M, then there is an index k > k0 such that

Ak g W. The choice of V and k0 implies that every P-map f: K^> V is e-close to a

map/': K-* Ak and hence to a map of K into JF.

(2.3) Lemma. An — mop —> A0 iff A0 is P-e-movable and lim dc(An, A¿) = 0.
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Proof. Let A0 be P-e-movable and suppose lim dc(An, Aq) — 0. For any e > 0

there is a neighborhood V of A0 in M and an index «0 such that every P-map /:

K -» V is (e/2)-close to a map /': K—> A0 and dc(An, A0) < e/2 for all « > «0. For

each n > n0, pick an (e/2)-map gn: A0^>An. Then / is e-close to each of the

compositions gn ° /': K^> An(n > n0). Hence, An — mop —> Aq.

Conversely, suppose that A„ — mop -» A0. Without loss of generality, we can

assume that A is a subset of the Hilbert cube Q. By Lemma (2.2), A0 is P-e-mova-

ble. Hence, for every e > 0, there is a neighborhood V of A 0 in Q and an index «0

such that, for « = 0 and n > n0 and for every P-map f: K —> V, A„ c V and there

is a map/': K—>A„ which is (e/2)-close to/. On the other hand, for each such n,

there are (e/2)-maps g„: An—> V with Kn = g„(An) a finite polyhedron. The choice

of V and «0 implies that the P-map i0 = iK^v: K0 -> F is (e/2)-close to a map i'0n:

K0 -» An(n > m0) and that each P-map /„ = iryi Kn-+V (n > «n) is (e/2)-close to

a map i'M: K„^>A0. Clearly, for every « > n0, i'0n ° g0: A0^>An and ÏM ° g„:

An -> A0 are e-maps. Hence, dc(An, A0) < e for each « > «0. Since e was arbitrary,

lim dc(An, A^ = 0.

3. The hyperspace AANR^A'). The collection of all AANRç's (or, equivalently,

of all P-e-movable compacta) in a metric space A can be made into a hyperspace

AANR^A) by defining the notion of convergence in AANRçiA') be means of

P-e-movably regular convergence. By Lemma (2.3), AANR^A) is a metric space

because its topology is induced by the metric of continuity. In this section we shall

use Begle's method in [Be] to define a new metric o£0 on AANRciA") which is

equivalent to dc. Both dc and d^ need not be complete (see [Bl, Example 5]).

However, the results in [Be] imply that the metric d^, (and therefore also the metric

dc) is equivalent to a complete metric on AANR^A) when A" is a complete metric

space. Since A is clearly homeomorphic with a closed subset of AANRC(A), we get

that AANR^A) is topologically complete iff A is topologically complete. We can

also conclude that AANR^A) is a separable metric space when A" is a separable

metric space (this was first observed in [C]).

In this section we assume that A lies in an AR space M of diameter 1.

(3.1) Definition. For a compact subset A of M and an e > 0, let S(e, A) be the

least upper bound of all S, 0 < ô < e, such that every P-map f:K—> NS(A) is

e-close to a map/': AT—» A.

It is clear that for each compactum A in M, S(e, A) always exists and is a

nonnegative, monotone, nondecreasing, and hence measurable, function on the

half-open interval /* = (0, 1]. If A is P-e-movable, then S(e, A) > 0 everywhere in

/* and conversely.

The following three lemmas resemble Lemmas (3.2), (3.3), and (3.4) in [Cl],

respectively. In order to prove them, one must simply require in the corresponding

proofs in [Cl] that maps are small. We shall illustrate those changes by presenting

the proof of Lemma (3.4).

(3.2) Lemma. If lim dH(A„, A0) = 0, then An - mop -> A0 iff lim inf S(e, An) > 0

for each e in I*.
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(3.3) Lemma. // lim dH(A„, A0) = 0 and A0 E AANRc(A), then lim sup <5(eo, An)

< 5(e0, A^)for all e0 G /* for which d(e, A¿) is right-hand continuous at e0.

(3.4) Lemma. If An — mop" -> A& then S(e0, A0) < hm inf 8(60, A„)for all e0 G /*

for which S(e, A¿) is left-hand continuous at e0.

Proof. Let us consider a point e0 G I* at which the function S(e, A0) is left-hand

continuous. Suppose that 5(e0, A0) > lim inf S(e0, An). Then there is an e, 0 < e <

e0, and a subsequence {^4^} of {A„} such that 5(e0, A^) + e < 5(e0, A0) — e for all

i > 0. Since the function §(e, A0) is left-hand continuous at e,,, there is a number d,

0 < 2d < e, such that 8(e, A0) G (5(en, A¿) — e, S(e0, A¿) + e) whenever e G (e0 -

2d, e0] n I*. In particular, 5(e0 — d, A0) > d(e0, A„) + e for all i > 0.

Now, we select a 8, 0 < 8 < d/2, and a j0 such that for every P-map /:

K-* Ng(A0) and every y >j0 there is a map/': K^*Aj which is (e0 — d)-c\ose to/.

Finally, pick k so that nk >j0 and d^A^, A0) <S. Since N^^^^A^) G

N*.0-4aJÍA¿), every P-map /: K ^> N^^+^AJ is e0-close to a map /':

K^> A„k. This however contradicts the defimtion of S(e0, A^) and therefore proves

the lemma.

From Lemmas (3.3) and (3.4) we have the following theorem resembling Theo-

rem 1 in [Be].

(3.5) Theorem. If An — moß^>A0, then lim S(e, An) exists and equals S(e, AQ)

almost everywhere in I*.

We are now ready to introduce the metric d^, on the space AANR^A'). Let E

be the Banach space of all bounded measurable functions on the interval /*, the

norm of an element/in E being defined as

11/11 = (Vi de.

We can consider AANR^A) as a subset of 2X X E if we identify each element

A of AANR^A) with the pair (A, d(e, A)) in 2X X E. Hence a metric is defined in

AANRc(A) by letting the distance between two points in AANR^A") be the

distance between the corresponding points in 2X X E. Specifically,

¿LÍA, B) = d2(A,B) + (f)s(e,A)-S(e,B)\de)2}
2-11/2

With obvious modifications the arguments on pages 444-446 in [Be] (using

Lemmas (3.2), (3.3), (2.2), and (3.4) instead of Begle's Lemmas 1, 3, 4, and 5,

respectively) show that this metric induces the same topology on AA-NR^A1) as the

metric of continuity (or, equivalently, as that defined in terms of P-e-movably

regular convergence) and proves the following two theorems.

(3.6) Theorem. For a metric space X, the following are equivalent.

(i) A is topologically complete.

(ii) AANR^A') is topologically complete.

(iii) AANRc(A) is a Gs in 2X X E.
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(3.7) Theorem [C, Theorem 3.2]. If X is a separable metric space, then

AANR^A) is a separable metric space.

(3.8) Corollary. The hyperspace AAR(A") of all approximative absolute retracts

[C] in a metric space X topologized by the metric of continuity is topologically

complete iff X is topologically complete.

Proof. Since an AANR«-. is an AAR iff it has trivial shape [Bo], AAR(A^) is a

closed subset of AANR^A) [CS].

(3.9) Remark. Applying Theorem 1 in [K] it is possible to exhibit for a complete

metric space A a complete metric d%,0 on AANR^A) which is equivalent with both

dc and d^. One such metric is defined by

*J4. B) = 4L(A, B) + I  1.
n%   2"   \gn(A)-gÂB)\+\gn(A)-gn(B)\'

where g„(A) = f1Q/"8(e, A) de.

(3.10) Remark. All of the results in §§2 and 3 (except (2.3)) are also true when

the class P is replaced by an arbitrary class C of topological spaces. Hence, there

are versions of Theorems (3.6) and (3.7) for the hyperspace mo¿(X) of all C-e-

movable compacta [C2] in a metric space X. It might appear to the reader that to

consider C-e-movable instead of P-e-movable compacta (or AANRç's) is an

uninteresting generalization. However, the following theorem from [C2] shows that

this maybe is not so.

(3.11) If a tree-like continuum A is P-e-movable, where T denotes the class of all

compact trees, then A has the fixed point property.

This result implies that the question as to whether every tree-like plane con-

tinuum has the fixed point property will have an affirmative answer provided the

following conjecture is true.

(3.12) Conjecture. Every tree-like plane continuum is P-e-movable.

We proved in (3.6) and (3.7) that the hyperspace of all P-e-movable plane

compacta can be organized into a complete separable metric space.

(3.13) Remark. An interesting consequence of the method of proof of Theorem

(3.6) is that the hyperspace AANRN(A") of all AANRN's in a complete metric space

X can be topologized as a complete metric space. Indeed, since a compactum is an

AANRN iff it is an AANRc and an FANR [Bo] and AANRN's are movable [Bo],

we see that a compactum is an AANRN iff it is an AANRc and is calm [CS]. Using

the author's results in [C3] and Theorem (3.6), it is easy to check that the following

metric dNo on AANRN(A^ is equivalent to a complete metric when A" is a complete

metric space. Fox A, B G AANRN(Ar), define

dNo(A, B) = [(d^(A, B)f + (dca(A, B)f]X/\

where dca is the metric of P-calmly regular convergence from [C3].

4. Subsets of AANR^A') of the first category. In this section we shall make the

assumption that A" is a Q-mamfo\à. Since every Q-m&rûîolà is topologically

complete, AANR^A) is, by (3.6), topologically complete. Hence, a statement
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about the Baire category of a subset of AANRc(A) is meaningful. The following

results, of this type, are of some interest.

(4.1) Theorem. The collection of all AANRc's of finite fundamental dimension in

X is of the first Baire category in AANRC(A).

Proof. Let mo„e(A) denote all AANRc's in A" of fundamental dimension < «

and let mo<(A) = U "_„ mo¿(X). Clearly, A G AANR^A) has finite fundamental

dimension iff A G /wo*(A). In order to prove that moJ(A") is of the first Baire

category it suffices to show that each Bn = AANRciA') — mo^(X) is both open

and dense in AANR^A). It was proved in [CS] that mo^(X) is closed in (2X, dc).

Hence, B„ is open in AANR^A"). Let AANRl(A') denote all AANR^s in X which

are Z-sets in A. Since, by the Mapping Replacement Theorem [Ch], AANRf (A) is

dense in AANRc(A), Bn will be dense in AANR^A) provided £„z = Bn n

AANRf(A) is dense in AANR^A). To prove this, consider an A G AANR|(A)

and let p E A. For every integer k > 0, pick a Z-set AANRc A'k in A with infinite

fundamental dimensional which does not intersect A and lies in Nx,k(p). An

example of an AANRc which is not of finite fundamental dimension is a one-point

compactification of an infinite string of spheres of higher and higher dimension

with two adjacent intersecting only in a single point. This space is an AANRc by

Theorem 2.3 in [C]. Let Ak = A u A'k. By [B2, Theorem (11.1)], each Ak is also an

AANRc. Clearly, lim dc(Ak, A) = 0 so that the sequence {Ak} in P„z converges in

AANRf(A)to/i.

(4.2) Theorem. The collection of all AANRc's *n X w'tn some Betti number finite

is of the first Baire category in AANRc(A).

Proof. Let mOß(nm)(X) denote all AANRc's A in X with the nth Bettti number

p"(A) < m and let wo|(>)(A) = U^m=0 wo¿(nm)(A). Then some Betti number of

A G AANRcíA-) is finite iff À G mo^(X). Put Pnm = AANRc(A) -
moB(n,m)(x)- As in (4-!)> il suffices to prove that P„zm = Bn^, n AANR|(X) is

dense in AANRf(A") because Bnm is open in AANRc(A) by [Bl, §3]. This can be

done as in the proof of (4.1). The only difference is that now we take for A'k a

compactum such thatp"(A'k) > m.

(4.3) Corollary. The collection AANRN(A) of all approximative absolute neigh-

borhood retracts in the sense of Noguchi [N] in A is of the first Baire category in

AANRC(A").

Proof. Gmurczyk [G] proved that all Betti numbers of an AANRN are finite.

Hence, AANRN(A) c mo^(X) and we can apply (4.2).

(4.4) Corollary. The collection of all compact ANR'j in X is of the first Baire

category in AANRc(A).

Proof. Recall [N] that every compactt ANR is an AANRN.

Using similar techniques one can also prove the following theorem.



SPACES OF AANR'S 615

(4.5) Theorem. The collection of all AANRc'J in X with some shape group finitely

presented is of the first Baire category in AANRc(A').
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