A NOTE ON WALLMAN COMPACTIFICATIONS

ASHA RANI SINGAL AND SUNDER LAL

ABSTRACT. T_3 and $T_{3\frac{1}{2}}$ spaces are characterized in terms of a Wallman compactification of a T_1 space X.

For a T_1 space (X, \mathfrak{T}) consider the Wallman compactification $(\chi, (X^*, \mathfrak{W}))$ [3] consisting of the set X^* of all ultraclosed filters on (X, \mathfrak{T}) , the topology \mathfrak{W} on X^* generated by $\{U^*: U \in \mathfrak{T}\}$ where $U^* = \{\mathfrak{F} \in X^*: U \in \mathfrak{F}\}$, and the dense embedding $\chi: X \to X^*$ defined by setting $\chi(x) = \mathbb{S}(x) = \{A \subset X: x \in A\}$. A well-known result about (X^*, \mathfrak{W}) is that (X, \mathfrak{T}) is T_4 iff (X^*, \mathfrak{W}) is T_2 . Here we characterize T_3 and $T_{3\frac{1}{2}}$ spaces in a similar manner.

We define a space (Y, \mathfrak{A}) to be T_2 relative to X for a subset X of Y if for each $x \in X$ and for each $y \in Y$ with $x \neq y$ there exist disjoint \mathfrak{A} -open sets U and V such that $x \in U$ and $y \in V$. (Y, \mathfrak{A}) is called *completely* T_2 relative to X if for $x \in X$ and $y \in Y$ with $x \neq y$, there exists a continuous real-valued function for Y with $f(x) \neq f(y)$.

THEOREM 1. X is $T_{3\frac{1}{2}}$ iff X^* is completely T_2 relative to $\chi(X)$.

PROOF. If X^* is completely T_2 relative to $\chi(X)$, then X is completely T_2 . Let F be a closed subset of X and let $x \notin F$. Since χ is an embedding, $\chi(x) \notin \mathcal{W}$ -cl $\chi(F)$. As X^* is completely T_2 relative to $\chi(X)$, for each $y \in \mathcal{W}$ -cl $\chi(F)$, there exist disjoint cozero sets U_y and V_y in X^* such that $y \in U_y$, $\chi(x) \in V_y$. Further \mathcal{W} -cl $\chi(F)$, being a closed subset of X^* , is compact. Let $\{U_{y_1}, U_{y_2}, \ldots, U_{y_n}\}$ be a finite subcover of $\{U_y: y \in \mathcal{W}\text{-cl }\chi(F)\}$. Then $\bigcup_{i=1}^n U_{y_i}$ and $\bigcap_{i=1}^n V_{y_i}$ are disjoint cozero sets containing $\chi(F)$ and $\chi(x)$. Thus x and F are contained in disjoint cozero subsets of X and, hence, X is completely regular.

Conversely, let X be $T_{3\frac{1}{2}}$ and let $\mathcal{F} \in X^*$ and $\chi(x) \in \chi(X)$ be such that $\chi(x) \neq \mathcal{F}$. Since \mathcal{F} is a closed ultrafilter, we have a closed subset $F \in \mathcal{F}$ such that $x \notin F$. Let a continuous $g: X \to [0, 1]$ separate x and F. If $g^*: X^* \to [0, 1]$ is the continuous extension of g, then g^* separates \mathcal{F} and $\chi(x)$.

Using similar arguments one can prove

THEOREM 2. X is T_3 iff X^* is T_2 relative to $\chi(X)$.

Received by the editors September 5, 1980. Presented at the 46th annual conference of the Indian Mathematical Society held at Bangalore from December 27-29, 1980.

AMS (MOS) subject classifications (1970). Primary 54D35, 54D10, 54D15.

Key words and phrases. Wallman compactification, relatively T_2 , relatively completely T_2 , cozero sets. ¹Research partially supported by grant no. CST/4657/79-MU(100)/78 from SCST Lucknow.

In terms of the new definitions here the above result about T_4 spaces can be put down as

THEOREM 3. X is T_4 iff X^* is T_2 relative to X^* .

REFERENCES

- 1. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand Reinhold, New York, 1960.
- 2. Darrel W. Hajek, A characterization of T₃ spaces, Indiana Univ. Math. J. 23 (1973), 23-25.
- 3. W. J. Thron, Topological structures, Holt, Rinehart and Winston, New York, 1966.

INSTITUTE OF ADVANCED STUDIES, MEERUT UNIVERSITY, MEERUT-250001, INDIA