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MINIMAL PERIODIC ORBITS OF

CONTINUOUS MAPPINGS OF THE CIRCLE

JAUME LLIBRE

Abstract. Let / be a continuous map of the circle into itself and suppose that

n > 1 is the least integer which occurs as a period of a periodic orbit off. Then we

say that a periodic orbit [px,... ,pn) is minimal if its period is n. We classify the

minimal periodic orbits, that is, we describe how the map / must act on the

minimal periodic orbits. We show that there are <p(n) types of minimal periodic

orbits of period n, where <p is the Euler phi-function.

1. Introduction and statement of results. Let C(X, X) denote the set of continuous

maps of a space X into itself. A point p G X is a periodic point of a map

/ G C(X, X) if f(p) = p for some positive integer n. The period of p is the least

such integer n, and the orbit oip is the set {fk(p)'- k = 1, . . . , «}. We refer to such

an orbit as aperiodic orbit of period n.

Let P(f) denote the set of positive integers « such that / has a periodic point of

period n. The following theorem for periodic orbits of maps of the closed interval 7

is proved in [5] (see also [3]).

Theorem (Stefan). Let f G C(7, 7). Suppose n G P(f) where n is odd and n > 1,

butj G P(f)for allj G {3, 5, . . ., n — 2}. Let {px,. . . ,p„) be a periodic orbit off

of period n with px <p2 < • ■ ■ <p„- Let t = (n + l)/2. Then either (A) or (B)

holds:

ÂPt-k) = Pt+k        for k = I, . . . , t - I,

(A) ÄPt+k) -Pt-k-í    fork = 0,...,t -2,    and

f(Pn) = Pr

f(P,-k) =P,+k+i    for k = 0, . . ., t - 2,

(B) APt+k) = Pt-k        for k - 1,...,/- 1,   and

APi) = Pr

In this paper we obtain a similar result for periodic orbits of maps of the circle

Sx. For distinct points a, b G Sx, let (a, b) and [a, b] denote the open and closed

intervals, respectively, from a counterclockwise to b.

Theorem A. Let f G C(SX, Sx). Suppose n G P(f) where n > 1, andj g P(f)for

allj G {1, 2, . . . , n — 1}. Let P = {/?„ . . . ,pn} be a periodic orbit of f of period n
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where P n (pk,Pk+i) = & for k = \, . .., n - \ and P n (p„,Pi) = 0- Then f(pk)

= />„(*), where a = r' with 1 < t < n, t relatively prime to n, and r is the permutation

of {1, 2, . . . , n) given by r(k) = k + 1 for k = 1, ...,«— 1 anrf t(«) = 1.

This theorem will be proved in §3.

We remark that, in Theorem A, « is the smallest element of P(f). Then we say

that a periodic orbit P is minimal if its period is n. Therefore, Theorem A describes

how a mapping/ G C(S \ S') must act on a minimal periodic orbit. Furthermore,

by Theorem A, there are <p(«) types of minimal periodic orbits of period n, where <p

is the Euler phi-function.

Let 7? be the real line, C the complex numbers, and take Sx = {z G C: \z\ = 1}.

We use the universal covering E G C(7?, S ') given by 7i(x) = e2mx. Let / G

C(Sx, S '), and let F G C(R, R) be a lifting of / to the covering space. If F and F'

are liftings of the same map/, then F = F' + k for some integer k. There exists an

integer N (the degree of/) such that F(x + 1) = T^x) + A for all x.

The following lemma is well known. For a proof see [4, p. 107].

Lemma 1. Let f G C(SX, Sx) and let N be the degree off. Then f has at least

¡1 — N\ fixed points.

From this lemma, if / G C(SX, Sx) has minimal periodic orbits of period n with

n > \, then the degree of /is 1.

Let/ G C(SX, Sx) and suppose the degree of/is 1. Fix a lifting 7^ of/. If /? is a

periodic point of / of period n and 7?(x) = p, then F"(x) = x + k for some integer

k. We shall call the number k/n the rotation number of p and denote it by Pp(p).

It is easy to see that Pp(p) does not depend on the choice of x, and that if

F' = F + m then pF(p) = pF(p) + m. For more details on the rotation number

see [2].

From Theorem A, it is immediate to prove the following.

Corollary B. In the hypotheses of Theorem A, let p¡ be a periodic point of the

minimal periodic orbit P, and let F be a lifting of f such that F(x) G [0, 1) where

E(x) — p¡. Then we have Pf{p¡) = t/n.

Note that each minimal periodic orbit is realizable for a suitable rotation map of

the circle.

2. Preliminary results. Let 7 and J be proper closed intervals on Sx and let

/ G C(Sx, S '). We say 7/-covers J if, for some closed interval K c 7,/(7C) = J.

We state the following three lemmas of Block, which will be used in the next

section.

Lemma 2 (Lemma 1 of [1]). Let I = [a, b] be a proper closed interval on S ' and let

/ G COS1, Sx). Suppose fia) = c and fib) = d and c¥=d. Then either I f-covers

[c, d] or I f-covers [d, c].

Lemma 3 (Lemma 2 of [1]). Let f G C(SX, Sx). Let I and J be proper closed

intervals on Sx such that I f-covers J. Suppose L is a closed interval with L c J-

Then I f-covers L.
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Lemma 4 (Lemma 3 of [1]). Let f G C(Sx, S '). Suppose N is a proper closed

interval on Sx such that N f-covers N. Then f has a fixed point in N.

3. Proof of Theorem A. Let/ G C(SX, Sx) and suppose that n > 1 is the smallest

element of P(f). Let P = {px, . . . ,p„) be a periodic orbit of /of period n where

P n (pk,Pk+i) = 0 for k — l, . . . , n — l and P n (p„,Px) = 0- Finally, we let

4 = [A. A+iJ fork = \,...,n-landIn = [p„,px].

For n = 2 or n = 3, Theorem A is immediate. Then we may assume that n > 4.

By Lemma 4, Ik does not/-cover 7* for all k = 1, . . ., n. From Lemmas 2 and 3,

7¿ /-covers 7y for some / ^ A: and for all k = 1, . . . , n. Hence for some set of

distinct Ik's, {Ik¡, . . ., 7^}, Ik¡ /-covers Ilc¡+¡ for i = 1, . . ., m - 1 and 7^ /-covers

7¿ , where 2 < m < n.

Since 7^ /-covers Ik¡, there is a closed interval Jm c 7^ such that f(Jm) = Ik.

Similarly, there are closed intervals J\, ■ ■ ■ ,Jm-X such that, for i = 1, . . ., m — 1,

J¡ c Iki and /(/,) = yi+1. It follows that /"(/,) = Ik¡. By Lemma 4,/m has a fixed

point in Ik. Then m = n. This implies that each 7t /-covers only one 7^, for some

7 ^ A:. Therefore,  7» n f(Ik) = {/(/>*)./(7>*+i)}  for A: = 1, ...,«- 1  and 7> n

/(/„) = {/(/>,),/(/>,,)}•
In particular, we have that 7, /-covers 7, for some / t^ 1. Suppose the following is

true:

(D Ij-[ÄPj,ÄPi)].

Therefore./ ¥= n. Since each Ik /-covers only one I¡, for some i ¥= k, by continuity

we have that f(Pj/2+x) G {pJ/2+x,Pj/2+3} if/ is even (see Figure 1). But this is a

contradiction, because fipj/2+x) =£Pj/2+\ an(l APj/2-1) = Pj/2+3- ^ J 's ^^ tnen

we have that f(pu+3)/2) G {/»o+i)/2'7'o+5)/2} (see FiSure 2)- Again, this is a

contradiction, since/tp0+,)/2) = />0+3)/2 and/(/»0_1)/2) = /»0+5)/2.

Figure 1
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Figure 2

Thus the following must be true:

(2) Ij=[ApÙ,AP2)\

Then f(px) = pp f(p2) = pi+x if j ihn or fipj = px if j = n. Since each Ik

/-covers only one I¡, for some /' 9* k, by continuity we have that there exists

(6{1, 2, . . . , n — 1} such that f(pk) = />o(Jt) where o is a permutation of

{1, 2, . . . , n) such that:

(a) o(k) = k + tiîk + t<n, and o(k) = k + t - n if k + t > n.

(b) o' is not the identity for all i G {1,2,...,« — 1}. Then Theorem A follows.
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