MINIMAL PERIODIC ORBITS OF CONTINUOUS MAPPINGS OF THE CIRCLE

JAUME LLIBRE

ABSTRACT. Let f be a continuous map of the circle into itself and suppose that n > 1 is the least integer which occurs as a period of a periodic orbit of f. Then we say that a periodic orbit $\{p_1, \ldots, p_n\}$ is minimal if its period is n. We classify the minimal periodic orbits, that is, we describe how the map f must act on the minimal periodic orbits. We show that there are $\varphi(n)$ types of minimal periodic orbits of period n, where φ is the Euler phi-function.

1. Introduction and statement of results. Let C(X, X) denote the set of continuous maps of a space X into itself. A point $p \in X$ is a *periodic point* of a map $f \in C(X, X)$ if $f^n(p) = p$ for some positive integer n. The *period* of p is the least such integer n, and the orbit of p is the set $\{f^k(p): k = 1, ..., n\}$. We refer to such an orbit as a *periodic orbit of period* n.

Let P(f) denote the set of positive integers *n* such that *f* has a periodic point of period *n*. The following theorem for periodic orbits of maps of the closed interval *I* is proved in [5] (see also [3]).

THEOREM (ŠTEFAN). Let $f \in C(I, I)$. Suppose $n \in P(f)$ where n is odd and n > 1, but $j \notin P(f)$ for all $j \in \{3, 5, ..., n-2\}$. Let $\{p_1, ..., p_n\}$ be a periodic orbit of f of period n with $p_1 < p_2 < \cdots < p_n$. Let t = (n + 1)/2. Then either (A) or (B) holds:

(A)

$$f(p_{t-k}) = p_{t+k} \quad \text{for } k = 1, \dots, t-1,$$

$$f(p_{t+k}) = p_{t-k-1} \quad \text{for } k = 0, \dots, t-2, \text{ and}$$

$$f(p_n) = p_t.$$
(B)

$$f(p_{t-k}) = p_{t+k+1} \quad \text{for } k = 0, \dots, t-2,$$

$$f(p_{t+k}) = p_{t-k} \quad \text{for } k = 1, \dots, t-1, \text{ and}$$

$$f(p_1) = p_t.$$

In this paper we obtain a similar result for periodic orbits of maps of the circle S^1 . For distinct points $a, b \in S^1$, let (a, b) and [a, b] denote the open and closed intervals, respectively, from a counterclockwise to b.

THEOREM A. Let $f \in C(S^1, S^1)$. Suppose $n \in P(f)$ where n > 1, and $j \notin P(f)$ for all $j \in \{1, 2, ..., n-1\}$. Let $P = \{p_1, ..., p_n\}$ be a periodic orbit of f of period n

© 1981 American Mathematical Society 0002-9939/81/0000-0543/\$02.00

Received by the editors November 4, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 54H20.

where $P \cap (p_k, p_{k+1}) = \emptyset$ for k = 1, ..., n-1 and $P \cap (p_n, p_1) = \emptyset$. Then $f(p_k) = p_{\sigma(k)}$, where $\sigma = \tau^t$ with $1 \le t \le n$, t relatively prime to n, and τ is the permutation of $\{1, 2, ..., n\}$ given by $\tau(k) = k + 1$ for k = 1, ..., n-1 and $\tau(n) = 1$.

This theorem will be proved in §3.

We remark that, in Theorem A, *n* is the smallest element of P(f). Then we say that a periodic orbit *P* is minimal if its period is *n*. Therefore, Theorem A describes how a mapping $f \in C(S^1, S^1)$ must act on a minimal periodic orbit. Furthermore, by Theorem A, there are $\varphi(n)$ types of minimal periodic orbits of period *n*, where φ is the Euler phi-function.

Let R be the real line, C the complex numbers, and take $S^1 = \{z \in C: |z| = 1\}$. We use the universal covering $E \in C(R, S^1)$ given by $E(x) = e^{2\pi i x}$. Let $f \in C(S^1, S^1)$, and let $F \in C(R, R)$ be a lifting of f to the covering space. If F and F' are liftings of the same map f, then F = F' + k for some integer k. There exists an integer N (the degree of f) such that F(x + 1) = F(x) + N for all x.

The following lemma is well known. For a proof see [4, p. 107].

LEMMA 1. Let $f \in C(S^1, S^1)$ and let N be the degree of f. Then f has at least |1 - N| fixed points.

From this lemma, if $f \in C(S^1, S^1)$ has minimal periodic orbits of period n with n > 1, then the degree of f is 1.

Let $f \in C(S^1, S^1)$ and suppose the degree of f is 1. Fix a lifting F of f. If p is a periodic point of f of period n and E(x) = p, then $F^n(x) = x + k$ for some integer k. We shall call the number k/n the rotation number of p and denote it by $\rho_F(p)$. It is easy to see that $\rho_F(p)$ does not depend on the choice of x, and that if F' = F + m then $\rho_{F'}(p) = \rho_F(p) + m$. For more details on the rotation number see [2].

From Theorem A, it is immediate to prove the following.

COROLLARY B. In the hypotheses of Theorem A, let p_i be a periodic point of the minimal periodic orbit P, and let F be a lifting of f such that $F(x) \in [0, 1)$ where $E(x) = p_i$. Then we have $\rho_F(p_i) = t/n$.

Note that each minimal periodic orbit is realizable for a suitable rotation map of the circle.

2. Preliminary results. Let I and J be proper closed intervals on S^1 and let $f \in C(S^1, S^1)$. We say I f-covers J if, for some closed interval $K \subset I, f(K) = J$.

We state the following three lemmas of Block, which will be used in the next section.

LEMMA 2 (LEMMA 1 OF [1]). Let I = [a, b] be a proper closed interval on S^1 and let $f \in C(S^1, S^1)$. Suppose f(a) = c and f(b) = d and $c \neq d$. Then either I f-covers [c, d] or I f-covers [d, c].

LEMMA 3 (LEMMA 2 OF [1]). Let $f \in C(S^1, S^1)$. Let I and J be proper closed intervals on S^1 such that I f-covers J. Suppose L is a closed interval with $L \subset J$. Then I f-covers L.

LEMMA 4 (LEMMA 3 OF [1]). Let $f \in C(S^1, S^1)$. Suppose N is a proper closed interval on S^1 such that N f-covers N. Then f has a fixed point in N.

3. Proof of Theorem A. Let $f \in C(S^1, S^1)$ and suppose that n > 1 is the smallest element of P(f). Let $P = \{p_1, \ldots, p_n\}$ be a periodic orbit of f of period n where $P \cap (p_k, p_{k+1}) = \emptyset$ for $k = 1, \ldots, n-1$ and $P \cap (p_n, p_1) = \emptyset$. Finally, we let $I_k = [p_k, p_{k+1}]$ for $k = 1, \ldots, n-1$ and $I_n = [p_n, p_1]$.

For n = 2 or n = 3, Theorem A is immediate. Then we may assume that $n \ge 4$.

By Lemma 4, I_k does not f-cover I_k for all k = 1, ..., n. From Lemmas 2 and 3, I_k f-covers I_j for some $j \neq k$ and for all k = 1, ..., n. Hence for some set of distinct I_k 's, $\{I_{k_1}, ..., I_{k_m}\}$, I_{k_i} f-covers $I_{k_{i+1}}$ for i = 1, ..., m - 1 and I_{k_m} f-covers I_{k_i} , where $2 \leq m \leq n$.

Since I_{k_m} f-covers I_{k_1} , there is a closed interval $J_m \subset I_{k_m}$ such that $f(J_m) = I_{k_1}$. Similarly, there are closed intervals J_1, \ldots, J_{m-1} such that, for $i = 1, \ldots, m-1$, $J_i \subset I_{k_i}$ and $f(J_i) = J_{i+1}$. It follows that $f^m(J_1) = I_{k_1}$. By Lemma 4, f^m has a fixed point in I_{k_1} . Then m = n. This implies that each I_k f-covers only one I_j , for some $j \neq k$. Therefore, $P \cap f(I_k) = \{f(p_k), f(p_{k+1})\}$ for $k = 1, \ldots, n-1$ and $P \cap f(I_n) = \{f(p_1), f(p_n)\}$.

In particular, we have that I_1 f-covers I_j for some $j \neq 1$. Suppose the following is true:

(1)
$$I_j = [f(p_2), f(p_1)].$$

Therefore $j \neq n$. Since each I_k f-covers only one I_i , for some $i \neq k$, by continuity we have that $f(p_{j/2+1}) \in \{p_{j/2+1}, p_{j/2+3}\}$ if j is even (see Figure 1). But this is a contradiction, because $f(p_{j/2+1}) \neq p_{j/2+1}$ and $f(p_{j/2-1}) = p_{j/2+3}$. If j is odd, then we have that $f(p_{(j+3)/2}) \in \{p_{(j+1)/2}, p_{(j+5)/2}\}$ (see Figure 2). Again, this is a contradiction, since $f(p_{(j+1)/2}) = p_{(j+3)/2}$ and $f(p_{(j-1)/2}) = p_{(j+5)/2}$.

FIGURE 1

FIGURE 2

Thus the following must be true:

(2)
$$I_j = [f(p_1), f(p_2)].$$

Then $f(p_1) = p_j$, $f(p_2) = p_{j+1}$ if $j \neq n$ or $f(p_2) = p_1$ if j = n. Since each I_k f-covers only one I_i , for some $i \neq k$, by continuity we have that there exists $t \in \{1, 2, ..., n-1\}$ such that $f(p_k) = p_{\sigma(k)}$ where σ is a permutation of $\{1, 2, ..., n\}$ such that:

(a) $\sigma(k) = k + t$ if $k + t \le n$, and $\sigma(k) = k + t - n$ if k + t > n.

(b) σ^i is not the identity for all $i \in \{1, 2, ..., n-1\}$. Then Theorem A follows.

References

1. L. Block, Periodic orbits of continuous mappings of the circle, Trans. Amer. Math. Soc. 260 (1980), 553-562.

2. L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, *Periodic points and topological entropy* of one dimensional maps, Proc. Conf. Global Theory of Dynamical Systems (Northwestern University) (Z. Nitecki and C. Robinson, eds.), Lecture Notes in Math., vol. 819, Springer-Verlag, Berlin and New York, 1980, pp. 18-34.

3. L. Block, Stability of periodic orbits in the theorem of Šarkovskii, Proc. Amer. Math. Soc. 81 (1981), 333-337.

4. R. F. Brown, The Lefschetz fixed point theorem, Scott, Foresman & Co., Glenview, Ill., 1971.

5. P. Stefan, A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237-248.

Secció de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain