STIEFEL-WHITNEY CLASSES IN $\boldsymbol{H}^{\boldsymbol{*}} \boldsymbol{B O}\langle\boldsymbol{O}(\boldsymbol{r})\rangle$

A. P. BAHRI AND M. E. MAHOWALD ${ }^{1}$

> ABSTRACT. We determine the Stiefel-Whitney classes in $H^{*}\left(B O ; \mathbf{Z}_{2}\right)$ which are mapped nontrivally by the homomorphism induced by the covering projection p : $B O\langle\phi(r)\rangle \rightarrow B O$.

Let $\phi(r)$ be the function defined by $\phi(r)=8 a+2^{b}$ where $r=4 a+b$ with $0 \leqslant b \leqslant 3$ and let $B O\langle\phi(r)\rangle$ be the $(\phi(r)-1)$-connected covering of $B O$. It follows from Stong's computation of $H^{*}\left(B O\langle\phi(r)\rangle ; \mathbf{Z}_{2}\right)$ in [4] that the covering map

$$
p: B O\langle\phi(r)\rangle \rightarrow B O
$$

maps the Stiefel-Whitney classes $w_{i} \in H^{*}\left(B O ; \mathbf{Z}_{2}\right)$ to generators in $H^{*} B O\langle\phi(r)\rangle$ if $i-1$ has at least r ones in its dyadic expansion. The remaining classes are mapped to decomposables. In this note we determine which Stiefel-Whitney classes are mapped to nonzero decomposables. In doing so we display a relationship between $H^{*} B O\langle\phi(r)\rangle$ and the cohomology of certain spaces related to $R P^{\infty}$.

Let A denote the mod 2 Steenrod algebra and A_{r} the subalgebra generated by $\mathrm{Sq}^{1}, \mathrm{Sq}^{2}, \mathrm{Sq}^{4}, \ldots, \mathrm{Sq}^{2}$. Let $P=\mathbf{Z}_{2}\left[x, x^{-1}\right]$ be the ring of Laurent polynomials in one variable x of degree +1 , made into a module over A by setting

$$
\mathrm{Sq}^{i} x^{j}=\frac{j(j-1) \cdots(j-i+1)}{1 \cdot 2 \cdots i} \cdot x^{i+j}
$$

Let $F_{-2, r}$ denote the A_{r}-submodule of P generated by x^{j} with $j<-2$.
Theorem A. The class $p^{*} w_{n}$ is nonzero in $H^{*} B O\langle\phi(r)\rangle$ if and only if $\Sigma P / F_{-2, r}$ is nonzero in dimension n. The Poincaré series for $\Sigma P / F_{-2, r}$ is

$$
\frac{1}{1-t^{r^{r+1}}}\left(1+t^{2^{r}}\right)\left(1+t^{3 \cdot r^{r-1}}\right) \cdots\left(1+t^{\left(2^{r}-1\right) \cdot 2}\right)\left(1+t^{2^{2+1}-1}\right)
$$

The theorem is a consequence of the following two lemmas and the fact (from [2]) that as \mathbf{Z}_{2}-vector spaces

$$
\Sigma P / F_{-2, r} \cong \bigoplus_{j \equiv 0}^{\oplus}\left(_{\left(2^{+1}\right)} \Sigma^{j}\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)\right.
$$

Lemma 1. The class $p^{*} w_{n}$ is nonzero in $H^{*} B O\langle\phi(r)\rangle$ if and only if $A \otimes_{A_{r-1}} \mathbf{Z}_{2}$ is nonzero in dimension n.

Lemma 2. $A \otimes_{A_{r-1}} \mathbf{Z}_{2}$ and $\bigoplus_{j \equiv 0\left(2^{++1}\right)} \Sigma^{j}\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)$ are nonzero in exactly the same dimensions.

[^0]Proof of Lemma 1. Lemma 1 follows as a corollary to the following theorem which we prove by using a slight generalization of an argument of Giambalvo [1].

Theorem B. The map e: $A \otimes_{A_{r-1}} \mathbf{Z}_{2} \rightarrow H^{*} M O\langle\phi(r)\rangle$ given by evaluation on the Thom class $U \in H^{*} M O\langle\phi(r)\rangle$ is a monomorphism.

As remarked in [1] it suffices to prove that e is a monomorphism on the primitive elements of $A \otimes_{A_{r-1}} \mathbf{Z}_{2}$. Since $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*} \approx \mathbf{Z}_{2}\left[\xi_{1}^{2^{2}}, \xi_{2}^{2^{r-1}}, \ldots, \xi_{r+1}, \ldots\right]$, where ξ_{i} is the Milnor basis element of A^{*} in dimension $2^{i}-1$; there are primitives in $A \otimes_{A_{r-1}} \mathrm{Z}_{2}$ only in degrees $2^{r}, 3 \cdot 2^{r-1}, 7 \cdot 2^{r-2}, \ldots, 2^{r+1}-2$ and $2^{i}-1$ for $i \geqslant r+1$. For purely dimensional reasons the first $r+1$ primitives must be $\mathrm{Sq}^{2^{\prime}}$, $\mathrm{Sq}^{3 \cdot 2^{\prime-1}}, \ldots, \mathrm{Sq}^{2^{r+1}-2}$. The remaining primitives $Q^{2^{2}-1}, i \geqslant r+1$, are projections of primitives in A. Now

$$
\mathrm{Sq}^{j} U=w_{j} \cdot U \quad \text { for } j=2^{r}, 3 \cdot 2^{r-1}, \ldots, 2^{r+1}-2
$$

and

$$
Q^{2^{i}-1} U=w_{2^{i}-1} \cdot U+(\text { decomposables }) \cdot U \quad \text { for } i>r+1
$$

Since the numbers $j-1$ and $2^{i}-2$ for $i \geqslant r+1$ all have at least r ones in their dyadic expansion, $\mathrm{Sq}^{j} U$ and $Q^{2^{i}-1} U$ are nonzero by Stong's result, proving that e is a monomorphism. To deduce the lemma we need to show that Sq^{n} is nonzero in $A \otimes_{A_{r-1}} \mathbf{Z}_{2}$ if and only if there is a monomial of dimension n in $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}$. To see this recall that there is a right A-module structure on A^{*}, given by the duality pairing, with the property that

$$
\xi_{k} \chi \mathrm{Sq}^{j}= \begin{cases}\xi_{s} & \text { if } j=2^{k}-2^{s} \\ 0 & \text { otherwise }\end{cases}
$$

Since χ commutes with the diagonal homomorphism in A, we have

$$
\left\langle\left(\xi_{1}^{\varepsilon_{1}} \xi_{2}^{\varepsilon_{2}} \cdots \xi_{t}^{\varepsilon_{t}}\right), \chi \mathrm{Sq}^{n}\right\rangle=1 \quad \text { if } n=\varepsilon_{1}+3 \varepsilon_{2}+\cdots+\left(2^{t}-1\right) \varepsilon_{t}
$$

Considering the induced right $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)$-module structure on $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}$ then yields the result that $\chi \mathrm{Sq}^{n}$ is nonzero in $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)$ if and only if there is a monomial of dimension n in $\chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}$ completing the proof of Lemma 1.

Proof of Lemma 2. By only a slight modification of the argument given by Peterson, in [3], to compute $\chi\left(A \otimes_{A_{1}} \mathbf{Z}_{2}\right)^{*}$ and the fact that

$$
A_{r}^{*}=A^{*} /\left(\xi_{1}^{2^{r+1}}, \xi_{2}^{2^{\prime}}, \ldots, \xi_{r+1}^{2}, \xi_{r+2}, \ldots\right)
$$

we can show that as \mathbf{Z}_{2}-vector spaces

$$
\chi\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*} \cong \Lambda\left(\xi_{1}^{2^{r}}, \xi_{2}^{2^{-1}}, \ldots, \xi_{r}^{2}, \xi_{r+1}\right)
$$

where the right-hand side is the exterior algebra over \mathbf{Z}_{2} generated by $\xi_{1}^{2^{2}}, \ldots, \xi_{r+1}$. We define a map $\lambda: \Sigma^{2^{++1}} \chi\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right) \rightarrow \chi\left(A \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}$ of vector spaces over \mathbf{Z}_{2}, by

$$
\lambda\left(\xi_{1}^{2 e_{1}} \xi_{2}^{2^{r-1} e_{2}} \cdots \xi_{r+1}^{\varepsilon_{r}+1}\right)=\xi_{1}^{2^{\prime}\left(e_{1}+2 t\right)} \xi_{2}^{2^{r-1} e_{2}} \cdots \xi_{r+1}^{\varepsilon_{+}}
$$

for $\varepsilon_{i}=0$ or 1 . Since λ is a monomorphism it follows that $A \otimes_{A_{r-1}} \mathbf{Z}_{2}$ is nonzero in dimension n if $\bigoplus_{j \equiv 0\left(2^{++1}\right)} \Sigma^{j} A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}$ is. Conversely we define a map

$$
\rho: \chi\left(A \otimes_{A_{r}-1} \mathbf{Z}_{2}\right)^{*} \rightarrow \underset{j \equiv 0\left(2^{r+1}\right)}{\oplus} \Sigma^{j} \chi\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}
$$

by the following procedure. Suppose that

$$
\xi_{1}^{2 a_{1}} \xi_{2}^{2^{2-1} a_{2}} \cdots \xi_{r+1}^{a_{+1}} \cdots \xi_{j}^{a_{j}}, \quad j>r+1, a_{i} \in \mathbf{Z}
$$

is a monomial in $\chi\left(A \otimes_{\boldsymbol{A}_{r-1}} \mathbf{Z}_{2}\right)^{*}$ of dimension n. Begin by replacing it with the monomial

$$
\begin{equation*}
\xi_{1}^{2 a_{1}+2^{r+1} \nu} \xi_{2}^{y^{2-1} a_{2}} \cdots \xi_{r+1}^{\omega} \tag{3}
\end{equation*}
$$

where $\omega=\sum_{i=r+1}^{j} a_{i}$ and $v=a_{r+2}+3 a_{r+3}+7 a_{r+4}+\cdots+\left(2^{j-r-1}-1\right) a_{j}$. This monomial is also of dimension n. Next we inductively "reduce" the monomial while at the same time preserving its dimension. If (3) is of the form

$$
\xi_{1}^{2 b_{1}} \xi_{2}^{2^{r-1} b_{2}} \cdots \xi_{i}^{2^{r+1-b_{i}} \xi_{i+1}^{2^{r--} \xi_{+1}} \cdots \xi_{r+1}^{e_{r}}}
$$

with $i \leqslant r+1, b_{i} \in \mathbf{Z}$ and each ε_{j} either 0 or 1 we replace it with the monomial

$$
\begin{align*}
& \xi_{1}^{2^{\prime}\left(b_{1}+t\right)+2^{r+1} c} \xi_{2}^{2^{r-1}\left(b_{2}+\varepsilon_{2}\right)} \xi_{3}^{\xi^{2-2}\left(b_{3}+\varepsilon_{3}\right)} \cdots \tag{4}\\
& \xi_{i-1}^{2^{2+2-i}\left(b_{i-1}+\varepsilon_{i-1}\right)} \xi_{i}^{2^{r+1-} \xi_{i}} \xi_{i+1}^{2 r-\xi_{+1}} \cdots \xi_{r+1}^{\varepsilon_{1}+1}
\end{align*}
$$

where $b_{i}=\varepsilon_{i}+2 \varepsilon_{i-1}+4 \varepsilon_{i-2}+\cdots+2^{i-2} \varepsilon_{2}+2^{i-1} t$, each ε_{j} is either 0 or 1 and $c=\varepsilon_{i-1}+3 \varepsilon_{i-2}+\cdots+\left(2^{i-2}-1\right) \varepsilon_{2}+\left(2^{i-1}-1\right) t$. The monomial (4) also has dimension n. Continuing in this fashion we end up with a monomial of the form

$$
\begin{equation*}
\xi_{1}^{2_{1}^{2} \varepsilon_{1}+2^{r+1} q} \xi_{2}^{r^{2-1} \varepsilon_{2}} \xi_{3}^{2^{r-2} \varepsilon_{3}} \cdots \xi_{r+1}^{\varepsilon_{+1}} \tag{5}
\end{equation*}
$$

with each ε_{j} zero or one. We define $\rho\left(\xi_{1}^{2 a_{1}} \xi_{2}^{2^{r-1} a_{2}} \ldots \xi_{j}^{a_{j}}\right)$ to be the nonzero monomial $\xi_{1}^{2 \varepsilon_{1}} \cdots \xi_{r+1}^{\varepsilon_{r+1}}$ in $\Sigma^{2^{r+1} q} \chi\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)^{*}$ of dimension n; so

$$
\underset{j \equiv 0}{\bigoplus_{\left(2^{r+1}\right)}} \Sigma^{j} \chi\left(A_{r} \otimes_{A_{r-1}} \mathbf{Z}_{2}\right)
$$

is nonzero in dimension n completing the proof of Lemma 2.
Added in proof. Related results about the vanishing of Stiefel-Whitney classes have been proved by R. Stong. See $\S 3$ of Cobordism and Stiefel-Whitney Numbers, Topology 4 (1965), 241-246.

References

1. V. Giambalvo, On $\langle 8\rangle$-cobordism, Illinois J. Math. 15 (1971), 533-541.
2. W. H. Lin, D. M. Davis, M. E. Mahowald and J. F. Adams, Calculation of Lin's Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980), 459.
3. F. P. Peterson, Lectures on cobordism theory, Kinokuniya Book Store, Tokyo, 1967.
4. R. Stong, Determination of $H^{*}(B O(k, \ldots, \infty))$ and $H^{*}(B U(k, \ldots, \infty))$, Trans. Amer. Math. Soc. 104 (1963), 526-544.

Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
Department of Mathematics, Northwestern University, Evanston, Illinois 60201

[^0]: Received by the editors December 1, 1980.
 AMS (MOS) subject classifications (1970). Primary 55R40, 55R45, 57M10; Secondary 55N22, 55P42, 55S10.
 ${ }^{1}$ Supported in part by a grant from the National Science Foundation.

