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STIEFEL-WHITNEY CLASSES IN H*BO<tb(r)y

A. P. BAHRI AND M. E. MAHOWALD

Abstract. We determine the Stiefel-Whitney classes in H*(BO; Zj) which are

mapped nontnvally by the homomorphism induced by the covering projection p:

BO(<Kr)} -> BO.

Let <b(r) be the function defined by <b(r) = 8a + 2b where r = 4a + b with

0 < b < 3 and let 7¿0<<í>(/-)> be the (<^r) - l)-connected covering of BO. It follows

from Stong's computation of H*(BO($(r)/; Zj) in [4] that the covering map

p: BO<$(r); -* BO

maps the Stiefel-Whitney classes w¡ G H*(BO; Zj) to generators in 77*BO(<p(r)} if

i — l has at least r ones in its dyadic expansion. The remaining classes are mapped

to decomposables. In this note we determine which Stiefel-Whitney classes are

mapped to nonzero decomposables. In doing so we display a relationship between

H*BO((b(r)y and the cohomology of certain spaces related to 7tP°°.

Let A denote the mod 2 Steenrod algebra and Ar the subalgebra generated by

Sq1, Sq2, Sq4, . . . , Sq2'. Let P = ZJx, x"1] be the ring of Laurent polynomials in

one variable x of degree +1, made into a module over A by setting

Let F_2r denote the ,4,,-submodule of P generated by xj withy < -2.

Theorem A. The class p*wn is nonzero in H*BO(<p(r)y if and only ifS,P/F_2yr is

nonzero in dimension n. The Poincaré series for IP/F_2r is

—t—(l + /2')(1 + t^'1) ■ ■ ■ (1 + ^-»-2)(1 + t2^-x).

l - r

The theorem is a consequence of the following two lemmas and the fact (from

[2]) that as Z2-vector spaces

1P/F_2r^       ©      U(Ar®A   iZ2).
y = 0(2'+1)

Lemma 1. 77ie class p*wn is nonzero in H*BO($(r))> if and only if A ®A _ Z2 is

nonzero in dimension n.

Lemma 2. A ®. Z2 and ®.=Q(2r+t) 1J(Ar ®Ari Zj) are nonzero in exactly the

same dimensions.
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Proof of Lemma 1. Lemma 1 follows as a corollary to the following theorem

which we prove by using a slight generalization of an argument of Giambalvo [1].

Theorem B. The map e: A <S)A Z2 -» H*MO($(r)/ given by evaluation on the

Thorn class U G H* MO(<b(r)/ is a monomorphism.

As remarked in [1] it suffices to prove that e is a monomorphism on the primitive

elements of A ®Ari Z2. Since x(A ®A,_, ̂ 2)* = ^¿lèf, £2 > • • • > C+i> • • • ]> where

£ is the Milnor basis element of A* in dimension 2' — 1; there are primitives in

A ®Ar_t Zj only in degrees 2r, 3 • 2r~x, 7 • 2r~2, ...,2r+x -2 and 2' - 1 for

i > r + 1. For purely dimensional reasons the first r + 1 primitives must be Sqr,

Sq3'2' , . . ., Sq2+ ~2. The remaining primitives Q2~x, i > r + I, are projections of

primitives in A. Now

Sq/i/ =Wj-U   for/ = 2r, 3 • 2r~x, . . . , 2r+x - 2

and

Q2'~XU = w2i_x ■ U + (decomposables) • U   for / > r + 1.

Since the numbers / — 1 and 2' — 2 for /' > r + 1 all have at least r ones in their

dyadic expansion, Sq/f7 and Q2'~XU are nonzero by Stong's result, proving that e is

a monomorphism. To deduce the lemma we need to show that Sq" is nonzero in

A ®A _ Z2 if and only if there is a monomial of dimension « in \(A ®A Zj)*. To

see this recall that there is a right A -module structure on A*, given by the duality

pairing, with the property that

otherwise.

Since x commutes with the diagonal homomorphism in A, we have

<(£i'£2 • • • &% xSq"> = 1    if n = e, + 3e2 + • • • + (2' - l)e,.

Considering the induced right \(A ®a,_, Z2)-module structure on x(A <2>Ar_( Zj)*

then yields the result that xSq" is nonzero in x(A ®a,., Z2) if and only if tnere is a

monomial of dimension n in x(A ®Ar„x Z2)* completing the proof of Lemma 1.

Proof of Lemma 2. By only a slight modification of the argument given by

Peterson, in [3], to compute x(A 0Al Z^* and the fact that

A;  = A* I (g**,*?, ■ ■ ■ . ir\»ir + 2> ■ ■ ■ ).

we can show that as Z2-vector spaces

x(a, ®^_, z¿« * A(ef. tr\ •'1¡'..?, ùi)
where the right-hand side is the exterior algebra over Z2 generated by |,2', . . ., |r+1.

We define a map A: 2Z2'*''x(Ar ̂ ^Z^ x(A ®A _, ^2)* 0I vector spaces over Z2,

by

Hè^r^ ■ ■ ■ tVi) = ip'+2%2"^ • • • esa
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for e, = 0 or 1. Since A is a monomorphism it follows that A ®Ar Z2 is nonzero in

dimension « if © =0   +t 1JAr ®Art Z2 is. Conversely we define a map

p: x(A ®Ar-X Z2)* a*      ©       WX(Ar ®Ar , Z2)*
y=0(2'+1)

by the following procedure. Suppose that

e»^rVi • • • eVr • • • %%      J>r+l, a, G Z,

is a monomial in x(A ®A _ Z2)* of dimension «. Begin by replacing it with the

monomial

(3) if'^Ht^"-^
where to = S^=r+, a¡ and v = ar+2 + 3ar+3 + 7ar+4 + • • • +(2J~r~x - \)ar This

monomial is also of dimension «. Next we inductively "reduce" the monomial

while at the same time preserving its dimension. If (3) is of the form

fi***"* • • ■ ¿r'~H2;?+i • • • tan
with / < r + 1, ô, G Z and each t, either 0 or 1 we replace it with the monomial

¿2'(*1+0 + 2'+,ci2'-'(62 + e2)i2'-:!(63 + e3) .   ,   .

(4) *1 « «3
¿r«-'(*i_1+^_1)^2'+1-^-^+, . . . **♦■

where /?, = e, + 2e¡_x + 4e(_2 + • • • -f-2,_2e2 + 2'~xt, each e, is either 0 or 1 and

c = e,_, + 3e,_2 + • • • +(2'~2 - l)e2 + (2,_1 - l)i. The monomial (4) also has

dimension «. Continuing in this fashion we end up with a monomial of the form

(5) ^'+r+'^r^r^---^¡
with each e, zero or one. We define p(£x2'a'i-2 "2 ■ • • |y0/) to be the nonzero

monomial £2'£| • • • i£¿{ in 22'+1,x(-4r ®A _ Z^* of dimension «; so

©     1/X{Ar Q%_, Z2)
j=0(T+l)

is nonzero in dimension n completing the proof of Lemma 2.

Added in proof. Related results about the vanishing of Stiefel-Whitney classes

have been proved by R. Stong. See §3 of Cobordism and Stiefel- Whitney Numbers,

Topology 4 (1965), 241-246.
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