SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

A SHORT PROOF OF THE JUNNILA QUASI-METRIZATION THEOREM

RALPH FOX

ABSTRACT. Junnila has shown in [2] that the classic γ -space conjecture is true in the class of developable spaces. This paper presents a new and straightforward proof of Junnila's theorem, that every developable γ -space is quasi-metrizable.

All spaces are T_1 topological spaces. Following [1], a neighbournet V on a space X is a binary relation on X such that, for each $x \in X$, the set $V\{x\} = \{y \in X \mid (x,y) \in V\}$ is a neighbourhood of x. Then X is a γ -space iff there exists a decreasing sequence $\{V_n \mid n \in \mathbb{N}\}$ of neighbournets (which will be called a γ -sequence) such that, at each point $x \in X$, the family $\{V_n^2\{x\} \mid n \in \mathbb{N}\}$ is a neighbourhood base [3] and [1]. Similarly, X is a quasi-metrizable space iff there exists a sequence $\{W_n \mid n \in \mathbb{N}\}$ of neighbournets (called a normal basic sequence) such that $W_{n+1}^2 \subseteq W_n$ for each $n \in \mathbb{N}$ and, at each point $x \in X$, the family $\{W_n\{x\} \mid n \in \mathbb{N}\}$ is a neighbourhood base [1].

LEMMA. Let U be a neighbournet on a developable γ -space X. Then there exists another neighbournet W on X such that $W^4 \subseteq U^2$.

PROOF. Let $\{\mathfrak{I}_n | n \in \mathbb{N}\}$ be a development for X, and $\{V_n | n \in \mathbb{N}\}$ a γ -sequence. Then $\{V_n^{\S}\{x\} | n \in \mathbb{N}\}$ will be a neighbourhood base at x. Without loss of generality, assume \mathfrak{I}_{n+1} refines \mathfrak{I}_n .

For each $x \in X$ define

$$m(x) = \min\{n \in \mathbb{N} | V_n^5\{x\} \subseteq U\{x\}\};$$

$$k(x) = \min\{n \ge m(x) | \operatorname{St}(x, \mathfrak{D}_n) \subseteq V_{m(x)}\{x\}\};$$

$$l(x) = \max\{\min\{k(y) | y \in A\} | A \text{ is a neighbourhood of } x\} \le k(x).$$
Let $C_0 = \emptyset$ and $C_n = \{x \in X | k(x) \le n\};$ then $\overline{C}_n = \{x \in X | l(x) \le n\}.$ Obviously, $x \notin \overline{C}_{l(x)-1}.$

Define W by $W\{x\} = V_{k(x)}\{x\} \setminus \overline{C}_{l(x)-1}$.

Received by the editors November 6, 1980 and, in revised form, April 24, 1981. 1980 Mathematics Subject Classification. Primary 54E15; Secondary 54E30, 54E99. Key words and phrases. Quasi-metric, γ -space, development.

664 RALPH FOX

Now suppose $x_4 \in W^4\{x_0\}$, and find $x_1, x_2, x_3 \in X$ so that $x_{i+1} \in W\{x_i\}$ for $i \leq 3$. Since $x_{i+1} \notin \overline{C}_{l(x_i)-1}$ we have $l(x_0) \leq l(x_i)$ for all i. There exists $y \in U\{x_0\}$ \cap St $(x_0, \mathfrak{D}_{l(x_0)})$ such that $k(y) = l(x_0)$. Therefore $m(y) \leq k(y) = l(x_0) \leq l(x_i) \leq k(x_i)$, and so

$$x_{i+1} \in W\{x_i\} \subseteq V_{k(x_i)}\{x_i\} \subseteq V_{m(y)}\{x_i\}.$$

Thus $x_4 \in V_{m(y)}^4\{x_0\}$, and as $y \in St(x_0, \mathfrak{D}_{l(x_0)})$ then

$$x_0 \in \operatorname{St}(y, \mathfrak{D}_{l(x_0)}) = \operatorname{St}(y, \mathfrak{D}_{k(y)}) \subseteq V_{m(y)}\{y\};$$

hence $x_4 \in V^5_{m(y)}\{y\} \subseteq U\{y\}$.

But $y \in U\{x_0\}$; hence $x_4 \in U^2\{x_0\}$ as required.

THEOREM (JUNNILA [2]). Every developable γ-space is quasi-metrizable.

PROOF. Let X be a developable γ -space, and $\{V_n|n\in\mathbb{N}\}$ a γ -sequence. Using the above lemma, inductively define a sequence $\{W_n|n\in\mathbb{N}\}$ of neighbournets so that $W_1^4\subseteq V_1^2$ and $W_{n+1}^4\subseteq (W_n\cap V_{n+1})^2$. Then $\{W_n^2|n\in\mathbb{N}\}$ is a normal basic sequence, and hence X is quasi-metrizable.

REFERENCES

- 1. H. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108. MR 58 #2734.
- 2. _____, Covering properties and quasi-uniformities of topological spaces, Ph.D. Thesis, Virginia Polytech. Inst. and State Univ., Blacksburg, 1978.
- 3. W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240. MR 49 #6173.

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901