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CONSTRUCTION OF FLXED POINTS

FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

GREGORY B. PASSTY

Abstract. In uniformly convex Banach spaces with Fréchet differentiate norms

(e.g. Lp, 1 <p < oo), fixed points for asymptotically nonexpansive mappings are

constructed as weak limits of iterates of the mappings themselves or of related

mappings.

Let E be a uniformly convex Banach space, and let C be a closed convex subset

of E. A mapping U of C into itself is said to be asymptotically nonexpansive (Goebel

and Kirk [6]) if || U"x - U"y\\ < k„\\x - y\\ for all x and/ in C, with lim„ k„ = 1.

It was proved in [6] that if C is further assumed to be bounded, then an

asymptotically nonexpansive self-map of C has a fixed point. We show here that if

E has a Fréchet differentiable norm, and if U is, for example, weakly continuous,

then fixed points of U can be obtained by iterating U starting at a point of

asymptotic regularity.

Theorem 1 extends theorems of Feathers and Dotson [5] and of Bose [2] which

were obtained in uniformly convex spaces with weakly continuous duality maps.

The basic tool in both of these papers was Opial's Lemma [7]. Because this lemma

does not carry over to Lp, p ^ 2, new techniques are needed for this more general

case. These were provided by Bâillon [1] and simplified by Brück [4] when the

norm is Fréchet differentiable.

We will present Theorem 1 in a slightly more general form, and then discuss

applications to asymptotically nonexpansive mappings and to a conjecture of H.

Schaefer [8].

First we extend the definition of [6] to sequences of maps which are not

necessarily powers of a given map.

Definition 1. The sequence {T„} ~_, of self-maps of C is asymptotically nonex-

pansive if || Tnx — Tny\\ < kn\\x — y\\ for all x,y in C with lim,, kn = 1.

Denote the set of fixed points of T by F(T), strong convergence by —», and weak

convergence by -»•. We may now state

Theorem 1. Let E be uniformly convex with a Fréchet differentiable norm, and C a

closed convex subset of E. Let F be a subset of C and S = { 7^ } *_, an asymptotically

nonexpansive sequence of self-maps of C such that (a) F c D ^°_, F(Tn). Assume also

that there exists x0 in C for which

(b) T^Xq -* z implies z E F, and
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(c) Tn TmXQ — ThXq -^ 0 as « —» co for all (fixed) m.

Then either (i) F = 0 and \\Tnx0\\^> + oo or (ii) F =£ 0 a«¿/ r„x0 -* a« element of

Note that hypothesis (c) may be interpreted as asymptotic regularity of S at x0.

In order to prove Theorem 1, we proceed using several lemmas.

Lemma 1. Let x0 and y0 be any two elements of C for which hypothesis (c) holds.

Then limn||7„x0 - Tnv0|| exists.

Proof. By the triangle inequality and the Lipschitz property of Tn,

\\TnXQ - 7;v0|| < ||7>0 - TnTmXQ\\ + \\T„Tmx0 - T„Tmy0\\ + \\T„Tmy0 - T„y0\\

< \\T„x0 - TnTmx0\\ + k„\\Tmx0 - Tmy0\\ + \\TnTmy0 - Tny0\\.

Fixing m and letting « —» oo, applying (c), and then letting »j —* oo, we see

lim sup || Tnx0 - Tny0\\ < lim inf ||Tmx0 - Tmy0\\.   Q.E.D.
n m

Corollary 1. For each f E F, limn||7nx0 - /|| exists.

Proof. By (a), Tnf = / for all n. In addition, x0 (by assumption) and/ satisfy (c).

Q.E.D.
A very important tool is a result proved by Brück, which we state here as

Lemma 2 [4]. Let E be a uniformly convex Banach space and let K be a nonempty

closed bounded convex subset of E. Then there exists a strictly increasing, continuous

convex function y: R+ —» R+ with y(0) = 0 such that every nonexpansive mapping U:

K —» E satisfies

y(\\rUx + (1 - r)Uy - U(rx + (1 - r)y)\\) < ||x - v|| - \[Ux - Uy\\

for all x, y in K and 0 < r < 1.

More suitable to our purposes is a variant of Lemma 2 for mappings which are

not necessarily nonexpansive.

Corollary 2. Let E, K, and consequently y be as in Lemma 2, and let T: K —» E

be Lipschitz with Lipschitz constant k. Then

\\rTx + (1 - r)Ty - T(rx + (I - r)y)\\ < ky-\\\x - y\\ - k~x\\Tx - Ty\\)

for all x and y in K and 0 < r < 1.

We now begin the proof of Theorem 1, following lines developed in [4].

Proof of Theorem 1 (beginning). Suppose some subsequence {7^x0} is

bounded. Since E is reflexive, a further subsequence must converge weakly to an

element z E E which, by (b), is in F. Thus F = 0 implies || T„x0\\ —► oo.

If, on the other hand, F ¥= 0, then there is some f0EF and, by Corollary 1,

{\\T„x0 - /0||} is bounded, say, by R. Let C, = {x G C: ||x -/0|| < R). Then C,

is closed, convex, bounded, and nonempty. Furthermore, Tnx0 G C, for all n. We

take C, to be the set K in Corollary 2.
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We abstract the next section of the proof as

Lemma 3. Under the hypotheses of Theorem 1, limn||/-7,nx0 + (1 — r)fx — /2|| exists

for allfx,f2 E F and for all 0 < r < 1.

Proof.

||/-7>0 + (1 - /•)/, -/2|| < r\\TnXQ - TnTmx0\\ + \\rTnTmx0 + (I - r)fx - f2\\

< r\\Tnx0 - T„Tmx0\\ + \\rTnTmx0 + (1 - r)TJx - T„(rTmx0 + (1 - r)fx)\\

+ \\Tn(rTmx0 + (l-r)fx)- TJ2\\

<r\\Tnx0- TnTmXQ\\ + kny-\\\TmXQ-fx\\ - k„x\\TnTmx0 - /,||)

+ k„\\rTmx0 + (l-r)fl - f2\\

< 'Il ^O"   TnTmXo\\

+ kny-\\\TmXQ - fx\\ - k-x\\Tnx0-fx\\ + k;x\\Tnx0 - TnTmx0\\)

+ kn\\rTmXQ + (l-r)fx-f2\\.

Here we have used the triangle inequality, hypothesis (a), the Lipschitz property of

T„, Corollary 2, the triangle inequality again, and the fact that y"1 is also an

increasing function. Fix m and let « —> oo:

lim mp \\rT„x0 + (l-r)fx- f2\\ < 0 + y-'(|| Tmx0 - /,|| - lim || Tnx0 - /,||)

+ \\rTmX0 + (1   -  r)f\  -fl\\-

Now letting m —> oo,

lim sup ||r7;x0 + (1 -/■)/, - /2|| < lim inf \\rTmx0 + (1 - /•)/, - /2||.    Q.E.D.
n m

Proof of Theorem 1 (conclusion). Let /,, f2 E F. Since E has a Fréchet

differentiable norm, we may take J(u) to be the Fréchet derivative of ^|| • ||2 at u.

Then there exists an increasing function X: R+—»R+ such that r_lÀ(/)—»0 as

/ -> 0+ and

III/, -/2II2 + Wi-AM)*<5ll/i -/a + hW2

<ill/i-/Jjl2 + (A/i-/a).A)+M»A|l)

for all h E E. Take « = r(Tnx0 — /,). Then

III/, - /2II2 + r(J(fx - f2), Tnx0 - /,) < \\\rTnx0 + (I - r)fx - f2\\2

< 111/, - All2 + r(J(fx - f2), TnXQ - /,) + X(r\\ T„x0 - /,||).

Letting « -^ 00 and using Lemma 3, we obtain

hm sup r(J(fx - f2), Tnx0 - /,) < \ lim ||r7;x0 + (1 - r)fx - f2\\2 - ¿||/, - /2||2
n "

< lim inf r(J(fx - f2), T„x0 - /,) + X(rM),
n
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where |j!**©—/in ** M for all «. Dividing by r and letting r-»0+ shows

hm„(7(/, — /2), Tnx0) exists for all /,, f2 E F. Thus if z, and z2 are two weak

subsequential limits of {Tnx0], (/(/, — /j), z, — z^ = 0. By (b), 2, and z2 are in F;

thus we may take / = z, for i = 1, 2, finding that 0 = (J(zx — z^, z, — z¿) =

||z, - z2||2. (We have used (Ju, u) = ||w||2 = ||/M||2 for all u E E [3, p. 97].) Since

all weak subsequential limits of the bounded sequence {T^x,,} are thus equal,

{ ̂ 1*0} must converge weakly to an element of F. Q.E.D.

We now present a consequence of Theorem 1 for weakly continuous mappings.

Corollary 3. Let C be closed, convex, and bounded, and let U: C —» C be weakly

continuous and asymptotically nonexpansive. If U is asymptotically regular at x0 E C

(i.e., if U" + xXq — {/"xq—»0), then U"x0 converges weakly to a fixed point of U.

Proof. In Theorem 1, we take F = F(U), and S = {£/"}"_,. It is obvious that

(a) holds, and (c) holds by assumption. To see that (b) holds, note that UnjxQ —" z

and weak continuity imply that U^+Xx0—* Uz. On the other hand, asymptotic

regularity implies that {U"> + xXq} and {U">Xq} must have the same limit, namely z.

Thus Uz = z. F =£ 0 by [6], so {U"x0} must converge weakly to an element of F.

Q.E.D.
Theorem 1 may also be used to make statements about nonexpansive mappings.

Theorem 2. Let E be uniformly convex with a Fréchet differentiable norm, let C be

a bounded closed convex subset of E, and let U be a nonexpansive self-map of C.

Set Ux = XU + (1 - X)7 for fixed 0 < A < 1. Then for any x E C, { U£x)

converges weakly to a fixed point of U.

Remark. This theorem shows that Schaefer's conjecture [8] holds in a class of

uniformly convex spaces which includes Lp, 1 </» < 00.

Proof of Theorem 2. We apply Theorem 1 with F = F(U) and S = { £/£}"_,.

F(U) = F(UX) for all 0 < X < 1, so (a) holds. By the Browder-Kirk-Göhde Theo-

rem, U has a fixed point in C. Ux is thus asymptotically regular [8, Lemma 2]

establishing (c) with x0 any element of C. In order to verify (b), note that,by

asymptotic regularity, (7 — Ux) U£x —» 0. Since U£x -*• z (by assumption) and

since (7 — Ux) is demiclosed [3, Theorem 8.4], we see that 0 = (7 — Ux)z; i.e.

z = Uz. Since F is nonempty, {Uxx] must converge weakly to a fixed point of U.

Q.E.D.
Added in proof. The author has learned that Theorem 2 is a special case of a

result of S. Reich (J. Math. Anal. Appl. 67 (1979), 274-276, Theorem 2).
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