EXTENSION OF A RESULT OF BEACHY AND BLAIR

G. B. DESALE AND K. VARADARAJAN ${ }^{1}$

Abstract

Let $\alpha: R \rightarrow R$ be an automorphism of a ring R. If R is an α-reduced ring in which every faithful left ideal is cofaithful, then the same is true for the α-twisted power series ring $R^{*}[[x]]$.

Introduction. A module ${ }_{R} M$ is said to be cofaithful if there exists a finite number of elements m_{1}, \ldots, m_{k} in M with $\bigcap_{i=1}^{k} \operatorname{Ann}_{R}\left(m_{i}\right)=0$. Writing M^{k} for the direct sum of k copies of M, it is clear that M is cofaithful if and only if there exists an exact sequence $0 \rightarrow R \rightarrow M^{k}$ in R-mod, where k is some integer $\geqslant 1$. A result of Beachy and Blair [1] asserts that if R is a commutative ring in which every faithful ideal is cofaithful, then the same is true for the polynomial ring $R[x]$. The object of this note is to extend the validity of this result to skew power series rings under suitable assumptions on the ring R.

Throughout this note R will denote a ring with identity and all the modules considered will be unitary left modules.

1. α-reduced rings. Let $\alpha: R \rightarrow R$ be a ring endomorphism satisfying (1) $\alpha=1$. We write a^{α} for (a) α whenever $a \in R$. The twisted (or skew) power series ring corresponding to the endomorphism α will have as its elements the usual formal power series $\sum_{i>0} x^{i} a_{i}$ with $a_{i} \in R\left(x^{0}=1\right.$ by convention) with addition defined in the usual way, but multiplication given by $x^{i} x^{j}=x^{i+j}$ and $a \cdot x=x a^{\alpha}$ for $i \geqslant 0$, $j \geqslant 0$ and $a \in R$. Then $a \cdot x^{r}=x^{r} a^{\alpha^{r}}$ where $\alpha^{r}: R \rightarrow R$ is the r th power of α. We will fix an endomorphism α and denote the twisted power series ring corresponding to α by $R^{*}[[x]]$.

A ring R is said to be reduced if there are no nonzero nilpotent elements in R. If a, b are elements in a reduced ring, it is easily seen that $a b=0 \Leftrightarrow b a=0$.

Definition 1.1. We say that R is α-reduced if R is reduced and further satisfies the condition $a b=0 \Leftrightarrow a^{\alpha} b=0 \Leftrightarrow a b^{\alpha}=0$ for any a, b in R.

Proposition 1.2. Let R be α-reduced. Let $f=\Sigma_{i>0} x^{i} a_{i}, g=\Sigma_{i>0} x^{i} b_{i}$ be in $R^{*}[[x]]$. Then $f g=0$ in $R^{*}[[x]]$ if and only if $a_{i} b_{j}=0$ for all $i \geqslant 0, j \geqslant 0$.

[^0]Proof. Let R be α-reduced and $a_{i} b_{j}=0$ for all i, j. For any $k \geqslant 0$ the coefficient of x^{k} in $f g$ is $\sum_{i+j=k ; i>0, j>0} a_{i}^{\alpha} b_{j}$. Since R is α-reduced, from $a_{i} b_{j}=0$ we immediately get $a_{i}^{\alpha} b_{j}=0, a_{i}^{\alpha^{2}} b_{j}=0, \ldots, a_{i}^{\alpha^{\prime}} b_{j}=0$ for all $r \geqslant 0$. In particular $a_{i}^{\alpha \alpha_{j}} b_{j}=$ 0 . Hence $f g=0$.

Conversely assume $f g=0$ in $R^{*}[[x]]$. Then for any integer $k \geqslant 0$ we get

$$
\begin{equation*}
\sum_{\substack{i+j=k \\ i>0, j>0}} a_{i}^{\alpha} b_{j}=0 . \tag{0}
\end{equation*}
$$

We will refer to the equation $\sum_{i+j=k ; i>0, j>0} a_{i}^{\alpha} b_{j}=0$ as the k th equation of the system (S_{0}). The 0th equation of $\left(\mathrm{S}_{0}\right)$ yields $a_{0} b_{0}=0$. The first equation of $\left(\mathrm{S}_{0}\right)$ is

$$
\begin{equation*}
a_{0}^{\alpha} b_{1}+\alpha_{1} b_{0}=0 \tag{0}
\end{equation*}
$$

Multiplying this on the left by b_{0} we get

$$
\begin{equation*}
b_{0} a_{0}^{\alpha} b_{1}+b_{0} a_{1} b_{0}=0 \tag{0}
\end{equation*}
$$

Since R is α-reduced, from $a_{0} b_{0}=0$ we get $b_{0} a_{0}=0, a_{0}^{\alpha^{\prime}} b_{0}=0=a_{0} a_{0}^{\alpha^{\gamma}}, b_{0}^{\alpha^{\gamma}} a_{0}=0$ $=b_{0} a_{0}^{\alpha^{\prime}}$ for all $r \geqslant 1$. In particular $b_{0} a_{0}^{\alpha}=0$. Now, $\left(\mathrm{B}_{0}\right)$ yields $b_{0} a_{1} b_{0}=0$, which in turn yields $a_{1} b_{0} a_{1} b_{0}=0$. Since R is reduced, this implies that $a_{1} b_{0}=0$.

Assume inductively that we have proved that $a_{i} b_{0}=0$ for $0 \leqslant i \leqslant l$ (with $l>1$). The $(l+1)$ st equation in the system $\left(\mathrm{S}_{0}\right)$ is

$$
\begin{equation*}
a_{0}^{\alpha^{\alpha+1}} b_{l+1}+a_{1}^{\alpha} b_{l}+\cdots+a_{l}^{\alpha} b_{1}+a_{l+1} b_{0}=0 \tag{0}
\end{equation*}
$$

Multiplying (C_{0}) on the left by b_{0} we get

$$
\begin{equation*}
b_{0} a_{0}^{\alpha^{\prime+1}} b_{l+1}+b_{0} a_{1}^{\alpha} b_{l}+\cdots+b_{0} a_{l}^{\alpha} b_{1}+b_{0} a_{l+1} b_{0}=0 . \tag{0}
\end{equation*}
$$

From $a_{i} b_{0}=0$ for $0 \leqslant i \leqslant l$ and the α-reducibility of R we get $b_{0} a_{i}^{\alpha^{r}}=0$ for $0 \leqslant i \leqslant l$ and all $r \geqslant 0$. Now, equation $\left(\mathrm{D}_{0}\right)$ yields $b_{0} a_{l+1} b_{0}=0$. Hence $a_{l+1} b_{0} a_{l+1} b_{0}=0$. Since R is reduced, we get $a_{l+1} b_{0}=0$.
(E_{0})
It follows that $a_{i} b_{0}=0$ for all $i \geqslant 0$.
Substituting $\left(\mathrm{E}_{0}\right)$ in $\left(\mathrm{S}_{0}\right)$, we get for every integer $k \geqslant 1$ the system of equations

$$
\begin{equation*}
\sum_{\substack{i+j=k \\ i>0, j>1}} a_{i}^{\alpha} b_{j}=0 \tag{1}
\end{equation*}
$$

We will refer to the equation $\sum_{i+j=k ; i \geqslant 0, j>1} a_{i}^{\alpha} b_{j}=0$ as the k th equation of the system $\left(\mathrm{S}_{1}\right)$. The first equation of $\left(\mathrm{S}_{1}\right)$ yields $a_{0}^{\alpha} b_{1}=0$. The α-reduciblity of R now yields $a_{0} b_{1}=0=b_{1} a_{0}$ and $b_{1} a_{0}^{\alpha^{r}}=0$ for any $r \geqslant 1$. The second equation of the system $\left(S_{1}\right)$ is

$$
\begin{equation*}
a_{0}^{\alpha^{2}} b_{2}+a_{1}^{\alpha} b_{1}=0 \tag{1}
\end{equation*}
$$

Multiplying on the left by b_{1} we get

$$
\begin{equation*}
b_{1} a_{0}^{\alpha^{2}} b_{2}+b_{1} a_{1}^{\alpha} b_{1}=0 \tag{1}
\end{equation*}
$$

Using $b_{1} a_{0}^{\alpha^{\prime}}=0$ for any $r \geqslant 1$ we see from $\left(\mathrm{B}_{1}\right)$ that $b_{1} a_{1}^{\alpha} b_{1}=0$, which in turn yields $a_{1}^{\alpha} b_{1} a_{1}^{\alpha} b_{1}=0$. The reduced nature of R now yields $a_{1}^{\alpha} b_{1}=0$. The α-reduced nature of R now yields $a_{1} b_{1}=0$.

Assume inductively that we have proved that $a_{i} b_{1}=0$ for $0 \leqslant i \leqslant l$ (with $l \geqslant 1$). The α-reducibility of R then yields $b_{1} a_{i}^{\alpha^{\prime}}=0$ for $0 \leqslant i \leqslant l$ and $r>0$. The $(l+2)$ nd equation of the system $\left(\mathrm{S}_{1}\right)$ is

$$
\begin{equation*}
a_{0}^{\alpha+2} b_{l+2}+a_{1}^{\alpha+1} b_{1}+\cdots+a_{l+1}^{\alpha} b_{1}=0 \tag{1}
\end{equation*}
$$

Multiplying $\left(\mathrm{C}_{1}\right)$ on the left by b_{1} we get

$$
\begin{equation*}
b_{1} a_{0}^{\alpha^{\prime+2}} b_{l+2}+\cdots+b_{1} a_{l+1}^{\alpha} b_{1}=0 \tag{1}
\end{equation*}
$$

Using $b_{1} a_{i}^{\alpha^{\gamma}}=0$ for $0 \leqslant i \leqslant l$ in $\left(\mathrm{D}_{1}\right)$ we get $b_{1} a_{l+1}^{\alpha} b_{1}=0$. This in turn implies $a_{l+1}^{\alpha} b_{1} a_{l+1}^{\alpha} b_{1}=0$ and the reduced nature of R implies $a_{l+1}^{\alpha} b_{1}=0$. The α-reduced nature of R now yields $a_{l+1} b_{1}=0$.
$\left(\mathrm{E}_{1}\right) \quad$ It follows that $a_{i} b_{1}=0$ for all $i \geqslant 0$.
Using (E_{1}), the system $\left(\mathrm{S}_{1}\right)$ yields the system of equations

$$
\begin{equation*}
\sum_{\substack{i+j=k \\ i>0, j>2}} a_{i}^{\alpha^{j}} b_{j}=0 \quad \text { for any } k \geqslant 2 \tag{2}
\end{equation*}
$$

Proceeding as before and using $\left(\mathrm{S}_{2}\right)$ we can show that

$$
\begin{equation*}
a_{i} b_{2}=0 \quad \text { for all } i \geqslant 0 . \tag{2}
\end{equation*}
$$

Repeating this procedure we see that $a_{i} b_{j}=0$ for all i, j.
2. The main result. We will now prove the main result of this paper.

Theorem 2.1. Let $\alpha: R \rightarrow R$ be a ring automorphism of R with (1) $\alpha=1$. Let R be α-reduced and $R^{*}[[x]]$ the α-twisted power series ring over R. If every faithful left ideal in R is cofaithful, then every faithful left ideal in $R^{*}[[x]]$ is cofaithful.

Proof. Let I be any faithful left ideal of $R^{*}[[x]]$. Let $I_{0}=\{a \in R \mid$ there exists some $f \in I$ with a as one of the coefficients occurring in $f\}$. Let a, b be elements of I_{0}. Let $a=$ coefficient of x^{i} in f with $f \in I$ and $b=$ coefficient of x^{j} in g with $g \in I$. Then $a+b=$ coefficient of x^{i+j} in $x^{j} f+x^{i} g$ and $x^{j} f+x^{i} g \in I$. Hence $a+b \in I_{0}$.

Since α is an automorphism, α^{-1} exists. For any $r \in R$, the coefficient of x^{i} in $r^{\alpha^{-1}} \cdot f$ is precisely $r a$. Thus $a \in I_{0}, r \in R \Rightarrow r a \in I_{0}$. This proves that I_{0} is a left ideal in R.

Let $r \in \operatorname{Ann}_{R}\left(I_{0}\right)$. Then for any $f \in I$, the coefficient of x^{i} in $r^{\alpha^{-1}} \cdot f=r$. (coefficient of x^{i} in f) $=0$. Hence $r^{\alpha^{-1}} \cdot f=0$ for any $f \in I$. Since I is faithful in $R^{*}[[x]]$, we see that $r^{\alpha^{-1}}=0$. Hence $r=0$. This proves that I_{0} is faithful in R. Hence there exist finitely many elements $a_{1}, a_{2}, \ldots, a_{k}$ in I_{0} with $\mathrm{Ann}_{R}\left(a_{1}, \ldots, a_{k}\right)=0$.

Let $a_{j}=$ coefficient of $x^{\mu^{j}}$ in $f_{j} \in I$. Let $g=\sum_{i \geqslant 0} x^{i} \lambda_{i}$ be any element of $\operatorname{Ann}_{R^{*}[[x]]}\left(f_{1}, \ldots, f_{k}\right)$. From Proposition 1.2 we see that $\lambda_{i} a_{j}=0$ for all $i \geqslant 0$ and $1 \leqslant j \leqslant k$. Since $\operatorname{Ann}_{R}\left(a_{1}, \ldots, a_{k}\right)=0$ we get $\lambda_{i}=0$ for all $i \geqslant 0$ and hence $g=0$. This proves that $\operatorname{Ann}_{R^{*}[[x]]}\left(f_{1}, \ldots, f_{k}\right)=0$, thereby showing that I is cofaithful in $R^{*}[[x]]$-mod.

Corollary 2.2. If R is a commutative reduced ring in which every faithful ideal is cofaithful, then the same is true in the ordinary power series ring $R^{*}[[x]]$.

Proof. For a commutative reduced ring R, the conclusion of Proposition 1.2 is true. Hence the proof of Theorem 2.1 goes through when R is commutative.

References

1. J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 8 (1975), 1-13.

Department of Mathematics, University of Calgary, Calgary, Alberta, Canada

[^0]: Received by the editors July 29, 1980.
 1980 Mathematics Subject Classification. Primary 16-XX; Secondary 16A05.
 Key words and phrases. Cofaithful module, twisted power series ring.
 ${ }^{1}$ Research done when the second-mentioned author was partially supported by NSERC Grant A8225.

