EXTENSION OF A RESULT OF BEACHY AND BLAIR

G. B. DESALE AND K. VARADARAJAN¹

ABSTRACT. Let $\alpha: R \to R$ be an automorphism of a ring R. If R is an α -reduced ring in which every faithful left ideal is cofaithful, then the same is true for the α -twisted power series ring $R^{\bullet}[[x]]$.

Introduction. A module $_RM$ is said to be cofaithful if there exists a finite number of elements m_1, \ldots, m_k in M with $\bigcap_{i=1}^k \operatorname{Ann}_R(m_i) = 0$. Writing M^k for the direct sum of k copies of M, it is clear that M is cofaithful if and only if there exists an exact sequence $0 \to R \to M^k$ in R-mod, where k is some integer ≥ 1 . A result of Beachy and Blair [1] asserts that if R is a commutative ring in which every faithful ideal is cofaithful, then the same is true for the polynomial ring R[x]. The object of this note is to extend the validity of this result to skew power series rings under suitable assumptions on the ring R.

Throughout this note R will denote a ring with identity and all the modules considered will be unitary left modules.

1. α -reduced rings. Let $\alpha: R \to R$ be a ring endomorphism satisfying $(1)\alpha = 1$. We write a^{α} for $(a)\alpha$ whenever $a \in R$. The twisted (or skew) power series ring corresponding to the endomorphism α will have as its elements the usual formal power series $\sum_{i>0} x^i a_i$ with $a_i \in R$ ($x^0 = 1$ by convention) with addition defined in the usual way, but multiplication given by $x^i x^j = x^{i+j}$ and $a \cdot x = xa^{\alpha}$ for i > 0, j > 0 and $a \in R$. Then $a \cdot x' = x'a^{\alpha'}$ where $\alpha': R \to R$ is the *r*th power of α . We will fix an endomorphism α and denote the twisted power series ring corresponding to α by $R^*[[x]]$.

A ring R is said to be reduced if there are no nonzero nilpotent elements in R. If a, b are elements in a reduced ring, it is easily seen that $ab = 0 \Leftrightarrow ba = 0$.

DEFINITION 1.1. We say that R is α -reduced if R is reduced and further satisfies the condition $ab = 0 \Leftrightarrow a^{\alpha}b = 0 \Leftrightarrow ab^{\alpha} = 0$ for any a, b in R.

PROPOSITION 1.2. Let R be α -reduced. Let $f = \sum_{i>0} x^i a_i$, $g = \sum_{i>0} x^i b_i$ be in $R^*[[x]]$. Then fg = 0 in $R^*[[x]]$ if and only if $a_i b_i = 0$ for all i > 0, j > 0.

1980 Mathematics Subject Classification. Primary 16-XX; Secondary 16A05.

© 1982 American Mathematical Society 0002-9939/81/0000-1016/\$02.00

Received by the editors July 29, 1980.

Key words and phrases. Cofaithful module, twisted power series ring.

¹Research done when the second-mentioned author was partially supported by NSERC Grant A8225.

PROOF. Let R be α -reduced and $a_i b_j = 0$ for all i, j. For any $k \ge 0$ the coefficient of x^k in fg is $\sum_{i+j=k; i\ge 0, j\ge 0} a_i^{\alpha b_j}$. Since R is α -reduced, from $a_i b_j = 0$ we immediately get $a_i^{\alpha} b_j = 0, a_i^{\alpha^2} b_j = 0, \ldots, a_i^{\alpha^2} b_j = 0$ for all $r \ge 0$. In particular $a_i^{\alpha b_j} = 0$. Hence fg = 0.

Conversely assume fg = 0 in $R^*[[x]]$. Then for any integer $k \ge 0$ we get

$$(S_0) \qquad \sum_{\substack{i+j=k\\i>0,j>0}} a_i^{\alpha'} b_j = 0.$$

We will refer to the equation $\sum_{i+j=k; i>0, j>0} a_i^{\alpha} b_j = 0$ as the kth equation of the system (S₀). The 0th equation of (S₀) yields $a_0 b_0 = 0$. The first equation of (S₀) is

(A₀)
$$a_0^{\alpha}b_1 + \alpha_1b_0 = 0.$$

Multiplying this on the left by b_0 we get

$$(B_0) b_0 a_0^{\alpha} b_1 + b_0 a_1 b_0 = 0.$$

Since R is α -reduced, from $a_0b_0 = 0$ we get $b_0a_0 = 0$, $a_0^{\alpha'}b_0 = 0 = a_0a_0^{\alpha'}$, $b_0^{\alpha'}a_0 = 0 = b_0a_0^{\alpha'}$ for all $r \ge 1$. In particular $b_0a_0^{\alpha} = 0$. Now, (B₀) yields $b_0a_1b_0 = 0$, which in turn yields $a_1b_0a_1b_0 = 0$. Since R is reduced, this implies that $a_1b_0 = 0$.

Assume inductively that we have proved that $a_i b_0 = 0$ for $0 \le i \le l$ (with $l \ge 1$). The (l + 1)st equation in the system (S₀) is

(C₀)
$$a_0^{\alpha^{l+1}}b_{l+1} + a_1^{\alpha}b_l + \cdots + a_l^{\alpha}b_1 + a_{l+1}b_0 = 0.$$

Multiplying (C_0) on the left by b_0 we get

(D₀)
$$b_0 a_0^{\alpha'^{l+1}} b_{l+1} + b_0 a_1^{\alpha} b_l + \cdots + b_0 a_l^{\alpha} b_1 + b_0 a_{l+1} b_0 = 0.$$

From $a_i b_0 = 0$ for $0 \le i \le l$ and the α -reducibility of R we get $b_0 a_i^{\alpha'} = 0$ for $0 \le i \le l$ and all $r \ge 0$. Now, equation (D₀) yields $b_0 a_{l+1} b_0 = 0$. Hence $a_{l+1} b_0 a_{l+1} b_0 = 0$. Since R is reduced, we get $a_{l+1} b_0 = 0$.

(E₀) It follows that
$$a_i b_0 = 0$$
 for all $i \ge 0$.

Substituting (E₀) in (S₀), we get for every integer $k \ge 1$ the system of equations

$$(S_1) \qquad \sum_{\substack{i+j=k\\i>0,\,j>1}} a_i^{\alpha} b_j = 0$$

We will refer to the equation $\sum_{i+j=k; i \ge 0, j\ge 1} a_i^{\alpha'} b_j = 0$ as the *k*th equation of the system (S₁). The first equation of (S₁) yields $a_0^{\alpha} b_1 = 0$. The α -reducibility of *R* now yields $a_0 b_1 = 0 = b_1 a_0$ and $b_1 a_0^{\alpha'} = 0$ for any $r \ge 1$. The second equation of the system (S₁) is

(A₁)
$$a_0^{\alpha^2}b_2 + a_1^{\alpha}b_1 = 0.$$

Multiplying on the left by b_1 we get

(B₁)
$$b_1 a_0^{\alpha^2} b_2 + b_1 a_1^{\alpha} b_1 = 0.$$

Using $b_1 a_0^{\alpha'} = 0$ for any $r \ge 1$ we see from (B₁) that $b_1 a_1^{\alpha} b_1 = 0$, which in turn yields $a_1^{\alpha} b_1 a_1^{\alpha} b_1 = 0$. The reduced nature of R now yields $a_1^{\alpha} b_1 = 0$. The α -reduced nature of R now yields $a_1 b_1 = 0$.

Assume inductively that we have proved that $a_i b_1 = 0$ for $0 \le i \le l$ (with $l \ge 1$). The α -reducibility of R then yields $b_1 a_i^{\alpha'} = 0$ for $0 \le i \le l$ and $r \ge 0$. The (l+2)nd equation of the system (S₁) is

(C₁)
$$a_0^{\alpha^{l+2}}b_{l+2} + a_1^{\alpha^{l+1}}b_1 + \cdots + a_{l+1}^{\alpha}b_l = 0.$$

Multiplying (C_1) on the left by b_1 we get

(D₁)
$$b_1 a_0^{\alpha^{l+2}} b_{l+2} + \cdots + b_1 a_{l+1}^{\alpha} b_1 = 0.$$

Using $b_1 a_i^{\alpha'} = 0$ for $0 \le i \le l$ in (D₁) we get $b_1 a_{l+1}^{\alpha} b_1 = 0$. This in turn implies $a_{l+1}^{\alpha} b_1 a_{l+1}^{\alpha} b_1 = 0$ and the reduced nature of R implies $a_{l+1}^{\alpha} b_1 = 0$. The α -reduced nature of R now yields $a_{l+1} b_1 = 0$.

(E₁) It follows that
$$a_i b_1 = 0$$
 for all $i \ge 0$.

Using (E_1) , the system (S_1) yields the system of equations

(S₂)
$$\sum_{\substack{i+j=k\\i>0,j>2}} a_i^{\alpha'} b_j = 0 \quad \text{for any } k \ge 2.$$

Proceeding as before and using (S_2) we can show that

$$(\mathbf{E}_2) \qquad \qquad a_i b_2 = 0 \quad \text{for all } i \ge 0.$$

Repeating this procedure we see that $a_i b_j = 0$ for all i, j.

2. The main result. We will now prove the main result of this paper.

THEOREM 2.1. Let $\alpha: R \to R$ be a ring automorphism of R with $(1)\alpha = 1$. Let R be α -reduced and $R^*[[x]]$ the α -twisted power series ring over R. If every faithful left ideal in R is cofaithful, then every faithful left ideal in $R^*[[x]]$ is cofaithful.

PROOF. Let I be any faithful left ideal of $R^*[[x]]$. Let $I_0 = \{a \in R | \text{ there exists} \text{ some } f \in I \text{ with } a \text{ as one of the coefficients occurring in } f\}$. Let a, b be elements of I_0 . Let $a = \text{coefficient of } x^i \text{ in } f \text{ with } f \in I \text{ and } b = \text{coefficient of } x^j \text{ in } g \text{ with } g \in I$. Then $a + b = \text{coefficient of } x^{i+j} \text{ in } x^j f + x^i g \text{ and } x^j f + x^i g \in I$. Hence $a + b \in I_0$.

Since α is an automorphism, α^{-1} exists. For any $r \in R$, the coefficient of x^i in $r^{\alpha^{-1}} \cdot f$ is precisely *ra*. Thus $a \in I_0$, $r \in R \Rightarrow ra \in I_0$. This proves that I_0 is a left ideal in R.

Let $r \in \operatorname{Ann}_R(I_0)$. Then for any $f \in I$, the coefficient of x^i in $r^{\alpha^{-1}} \cdot f = r \cdot (\operatorname{coefficient} of x^i \text{ in } f) = 0$. Hence $r^{\alpha^{-1}} \cdot f = 0$ for any $f \in I$. Since I is faithful in $R^*[[x]]$, we see that $r^{\alpha^{-1}} = 0$. Hence r = 0. This proves that I_0 is faithful in R. Hence there exist finitely many elements a_1, a_2, \ldots, a_k in I_0 with $\operatorname{Ann}_R(a_1, \ldots, a_k) = 0$.

Let $a_j = \text{coefficient}$ of x^{μ^j} in $f_j \in I$. Let $g = \sum_{i \ge 0} x^i \lambda_i$ be any element of $\text{Ann}_{R^*[[x]]}(f_1, \ldots, f_k)$. From Proposition 1.2 we see that $\lambda_i a_j = 0$ for all $i \ge 0$ and $1 \le j \le k$. Since $\text{Ann}_R(a_1, \ldots, a_k) = 0$ we get $\lambda_i = 0$ for all $i \ge 0$ and hence g = 0. This proves that $\text{Ann}_{R^*[[x]]}(f_1, \ldots, f_k) = 0$, thereby showing that I is cofaithful in $R^*[[x]]$ -mod.

COROLLARY 2.2. If R is a commutative reduced ring in which every faithful ideal is cofaithful, then the same is true in the ordinary power series ring $R^*[[x]]$.

PROOF. For a commutative reduced ring R, the conclusion of Proposition 1.2 is true. Hence the proof of Theorem 2.1 goes through when R is commutative.

References

1. J. A. Beachy and W. D. Blair, Rings whose faithful left ideals are cofaithful, Pacific J. Math. 8 (1975), 1-13.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALGARY, CALGARY, ALBERTA, CANADA