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TREES ARE CONTRACTIBLE

D. G. PAULOWICH

Abstract. Any hereditarily unicoherent, locally connected, compact connected

Hausdorff space is contractible using an ordered continuum. An example is given of

a hereditarily unicoherent, locally connected, first countable, compact connected

Hausdorff space that does not admit the structure of a topological semigroup with

zero and identity.

1. Definitions and examples. In this note we follow the terminology of [6], where a

continuum is a nonempty compact connected Hausdorff space and an arc [c, d] is a

continuum with exactly two non-cutpoints c and d. Recall also that a space X is

defined to be contractible to the point p E X if there exist both an arc [c, d] and a

continuous function <J>: X X [c, d] -* X such that for each x E X, </>(x, c) = p and

4>(x, d) = x.

By [7, Theorem 9] the continuum X is a tree if and only if X is locally connected

and hereditarily unicoherent. Given distinct points p, q G X there exists a unique arc

[p, q] contained in A" with endpointsp and q. We use [p, p] for {p}.

It is known that each subcontinuum of a tree is itself a tree. It follows from the

main result of this paper that the continuum X is a tree if and only if X is locally

connected and each subcontinuum of X is contractible.

We now define a first countable arc B = [a, b]. Let W denote the collection of all

sequences {xn} of real numbers with the property that only finitely many xn are

nonzero and, for each n, 0 < x„ < 1. Let a E W be the sequence with all entries

equal to 0. Let b be the sequence with all entries equal to 1. Define "< " on

B = W U {b} by {x„} < {v„} if either xn =£_yn for all n or there exists a positive

integer n such that xn < yn and xm < ym for all m > n.

Let (B, «s) have the order topology. For each n, let bn E B have the first n entries

equal to 1 and the remaining entries equal to 0. Note that the arc [a, b„] is

homeomorphic to [0,1]", with the reverse dictionary order and the order topology.

Proposition. Let m be any positive integer. Let f: [a, bm] -* [a, bm+i] be continu-

ous. For 0 « t =s 1, let A(t) denote the set of all {x„} E B such that xm+l — t and

xn = 0, for all n > m + 2. For each t, A(t) is homeomorphic to A(0) — [a, bm]. Then

for some t,f([a, bm]) is contained in A(t). Thus iff(a) = a, then J'([a, bm]) is contained

in [a, bj.
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Proof. If m = 1, we note that the arc [a, bx] is separable and each A(t) is a

maximal separable subarc of [a, b2\. We now use induction to prove the proposition

when m > 2. We may assume that the following result has already been established:

if the function g: [a, bm_x] -* [a, bm] is continuous then, for some t, g([a, ¿>m_,]) is

contained in B(t), where 77(/) is the set of all {x„} G 77 such that xm — t and xn = 0,

for all n 5= m + 1.

Define 77: [a, bm+l] - [a, bm] by setting 77({x„}) = {yn}, where y„ = x„+1, for

1 *£ n =£ m, and yn = 0, for all n 3= m + 1. Now 77 is continuous and for each {y„},

77 '({>>„}) is a maximal separable subarc of [a, bm+]]. We note that H \B(t)) =

A(t), for0<i < 1.

Let h: [a, bm] -> [a, ¿>m_,] be the restriction of 77 to [a, bm]. Since the image of a

separable space is itself separable, there exists a continuous function g: [a, bm_x] -»

[a, bm] such that (g° h) = (H ° f). By assumption, we conclude that g([a, bm_x]) is

contained in B(t), for some 0 < r < 1. But then f([a, bm]) is contained in H~\B(t))

= A(t).

Let /: 77 -» B be continuous. By the Proposition, if f(a) = a then /([a, Z>m]) is

contained in [a, bm], for all m. Another consequence of the Proposition is that

f(a) = b implies/is constant.

Now B = [a, b] is a remarkable continuum which can be used to construct other

spaces of interest. Let P be the first countable continuum obtained by identifying the

non-cutpoints of B. The hyperspace of all subcontinua of P is not a contractible

space, by a proof similar to that of [6, Theorem 5].

It is known [3, Theorem A] that each metric tree admits the structure of a

topological semilattice with zero and identity. It follows that each metric tree is

contractible (using a metric arc). Eberhart [1] gives an example of a nonmetrizable

tree which does not admit the structure of a topological semigroup with zero and

identity. We modify his work to produce a first countable example.

Let S = {1,2,3,4,5,6} have the discrete topology and let X be the space obtained

from B X S by identifying:

(b, 1) with (a, 2),

(b, 2) with (a, 3) and (a, 5),

(b, 3) with (a, 4),

(b, 5) with (b, 6).

Let \p: B X S -> Xbe the identification map. Let qn — \p(b, n),Kn<5, and let

q0 = \¡/(a, 1), q6 = \p(a,6). Then the continuum X is a first countable tree with

exactly three non-cutpoints q0, q4, and q6. We claim that A is the desired example.

Suppose not, i.e. there is a continuous multiplication <)>: X X X -» X with zero

p G Zand identity q E X. By [2, Exercise 17, p. 169], the identity element q must be

a non-cutpoint of X. We sketch the proof for the case q = q4 (the other two cases

being handled in a similar manner).

Suppose p — q0. Let x = q6 and define the retraction map r: X-* [p, x] by
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r(y) =y,iîy E [p, x], and r(y) = q2, if y E [q2, q]. Define F: [p, q] -» [p, x] by

F(z) = (r o <J>)(x, z), for each z E[p, q]. Then F(p) = p and F(<7) = x. But the

function F is continuous and [#0, qx] is homeomorphic to 5. By the Proposition,

F([q0, qx]) is contained in [q0, qx]. At best we have F(qx) — q¡ and then (by the

Proposition) F([qx, q2]) is contained in [qQ,q2]. At best we have F(q2) = q2 and then

(by the Proposition) F([q2, q3]) is contained in [q0, q5]. At best we have F(q3) = q5.

But [q2,q6] is homeomorphic to the union of two copies of B, meeting at the point b

in each arc. It is then a consequence of the Proposition that F([q3, q4]) equals {¿¡r5}.

We conclude that we always have F([q0, q4]) contained in [q0, q5] and thus F(q) =

F(q4) is not equal to x — q6. A contradiction has been reached. Essentially the same

proof works for any point p E [q0, q4].

Suppose p G [q2, q6]. Then by choosing a retraction map r: X -> [p, x], where

x = q0, and defining F: [p, q] -» [p, x] by F(z) — (r ° $)(x, z), we can again use

the Proposition to reach the contradictory conclusion: F(q) is not equal to x. This

ends the proof for the case q — q4.

We note that the preceding proof also shows that there is no subarc [p, q] of X

such that X is contractible to the point p E X, using the arc [p, q].

2. Proof of main result. Let T be any tree containing more than one point and let

C(T) be the hyperspace of all subcontinua of F with the finite topology [5]. We shall

prove that, for each t ET, the space T is contractible to the point t using some arc

[c, d] contained in the hyperspace C(T). We note that hyperspaces are arcwise

connected [4]. For each subcontinuum A G C(T) there is a unique continuous

retraction hA: T -> A such that, for each x G A, {t E T: hA(t) = x) is a continuum.

Define h: T X C(T) -+ T by, for each t G F and each A E C(T), h(t, A) = hA(t).

We note that for all s, t E T we have h(s, {/}) = / and h(s, T) = s. Given the fact

that there is an arc in the hyperspace joining {?} and T, we have only to prove that

the function h is continuous.

Consider a net {(r„, An): n E T} converging to (t, A) in T X C(T), such that the

net {h(tn, An): n ET} converges toy E T. We show that>> = h(t, A).

Let U be any open set containing A. Then there exists an element m such that, for

all n > m, An E U. Thus h(tn, An) E U. Therefore y is in the closure of U. We

conclude that v G A.

Let q E A, q¥= h(t, A). Choose a cutpoint p in the arc [q, h(t, A)]. Let V be the

component of (A— {p}) containing h(t, A). Let U be the component of (A- —

{h(t, A)}) containing p. Then U, V are open sets and t E V. Let (U, V) denote the

ngbhd of A in the hyperspace consisting of all subcontinua K C (U U V) having

nonempty intersection with both U and V. Then there exists an element m such that,

for all n> m, we have tnE V and An E (U, V). Thus there exists a point xn G (An

n V). But then h(tn, An) is contained in [/„, xj which is contained in V. Therefore

y is in the closure of V and so y ¥" q. We conclude that v = h(t, A). This completes

the proof.

The author wishes to thank Professor Michael Edelstein for suggesting the use of

nets in the preceding proof.
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