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A PRODUCT THEOREM FOR <5p CLASSES

AND AN APPLICATION

KENT PEARCE

Abstract. For Re/>>0 let $p = {f\f(z) = /w=i(l - xz)~p dp(x), \z\< 1, p. a
probability measure on | x | = 1} and let it), • ̂  = {fg\f G §p, g e ^}. Brickman,

Hallenbeck, MacGregor and Wilken proved a product theorem for the ^p classes;

they showed that if p > 0, q > 0, then % ■ 'S C %+„■ We give an (essentially

complete) converse for the result of Brickman et al., i.e., we show that if ^p ■ ¥q C

%+„, then p > 0, q > 0 or else p = q = 1 + it for some r real. As an immediate

consequence we disprove a conjecture about the extreme points of the closed convex

hulls of the classes Sp(y), 0 < | y | < w/2, of y-spirallike univalent functions, i.e.,

writing m= 1 +e~2IJ, we show {z/(\ - xz)m\ \ x |= 1} C SÍKSp(Y), 0<|y|<

it/2.

Introduction. Let â be the class of functions analytic on the open unit disk

ty = (z | |z|< 1}. Then â is a locally convex linear topological space with the

topology of uniform convergence on compacta of 6D. For <$ C & let %*$> denote the

closed convex hull of ÍB and let SOC® denote the set of extreme points of DC®.

Let S be the usual subclass of <$■ of univalent functions / normalized by /(0) = 0

and /'(0) = 1. Let St be the subclass of S of starlike functions (with respect to the

origin) and let Sp(y), -7r/2 < y < it/2, be the subclasses of S of y-spirallike

functions introduced by L. Spacek [6]. It is well known that the classes Sp(y),

-7t/2 < y < tt/2, include the class St as a special case, namely Sp(0) = St.

For Re p > 0 let ty be the subclasses of & of functions / given by

/(*)=/

■

-—dn(x),       zE^J,
1*1 = 1 (1 - xzy

for some probability measure u on {x \ \ x \ = 1}. It is easily seen that each ^ class is

closed and convex. Further,

&% = {—-—||*|=i!.
'   l(i-«)'M '    J

For Re p > 0, Re q > 0 let the product & • <3q be given by

%-%={fg\fE%,gE%).
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In an early paper [2] tying extreme point theory and univalent function theory

together, L. Brickman, T. H. MacGregor and D. R. Wilken identified the extreme

points of the closed convex hull of St as

(1) sxst = {     z     11*1=1
L (1 — xz)

Subsequent to their results T. H. MacGregor [4] suggested a conjecture for the

extreme points of the closed convex hulls of the classes Sp(y), --77/2 < y < ir/2;

namely,

P) S%Sp(v) = {(i_^w,r,|M=.}.      -f<r<|.

In a sequel [1] to the above paper of Brickman et al., a second proof of (1) was

given which used the following product theorem.

Theorem A. Let p > 0, q > 0. Then §p • §j C fp+q.

Because the proof of Theorem A in [1] depended strongly on the hypothesis that

p > 0, q > 0, an alternate proof was looked for which would allow this hypothesis to

be weakened. For it was clear that if Theorem A could be sufficiently strengthened

then the second proof of (1) could be adapted to prove the conjecture (2) suggested

by MacGregor.

We will now show that no general extension of Theorem A holds; i.e., we have the

following essentially complete converse of Theorem A.

Theorem 1. Let Rep > 0, Re q > 0. If i$p-(5qG <5p+q, then p > 0, q > 0 or

p — q — 1 + it for some t E R.

As an immediate consequence we have the following corollary which nullifies the

conjecture (2) about the extreme points of the closed convex hulls of the classes

Sp(y),0<|y|<V2.

Corollary \.Letm=\ + e~2iy. Then

{        Zx       ||*|=l}cS3CSp(Y),       0<|y|<f.

Technical background. It is well known that a function / £ 61 is an element of

Sp(y), -w/2 < y < it/2, if and only if,

(3) f(z) = zexp [      - (1 + e"2'>)log(l - xz) dn(x),       zE^,•Vi=i

for some probability measure n on [x 11 x \ — 1}.

We will use the following partial converse of Theorem A obtained by P. C.

Cochrane [3] to simplify part of our proof.

Theorem B. Suppose Wp ■ ¥q G <5p+q. Then p/q > 0.

For completeness we include a proof of Theorem B: Suppose

(4) %-%C %+q.
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As observed in [2], a necessary (and sufficient) condition for (4) is

(\-xz)-p(\-yz)-qE%+q,       |*| = |j,|=l,

i.e.

(5) (\-xz)-p{\-yz)-"=i-'-—-dp-iu),       |*|=b|=l,
J\u\=\ (l - uzy q

for some probability measure /x on {« 11 « |= 1}. Let ¡ix denote the first moment of

ju. If we expand both sides of (5) and then equate the first coefficients, we obtain

(6) px + qy = (p + qfau       |x| = |.y|=l.

Together (6) and the moment condition \fix |< 1 imply that p and q must be

collinear, i.e., p/q > 0.

We will also use several results from hypergeometric function theory, which we

recall now for reference. We refer the reader to L. J. Slater [5].

The hypergeometric function F(a, b;c; •), c ¥= 0,-1, -2,..., has the power series

expansion about the origin

(7) F(a,b;c;z)=  2     ,T   N"
„=0   (c)»"!

where

,,*        Í1, « = 0,
K   '"      \d(d+ 1) ••• (d+n- 1),     n>0.

It is easily seen that the series in (7) converges absolutely and locally uniformly on
<$.

If the parameters b and c satisfy the inequality Re c > Re b > 0, then F(a, b; c; ■)

has an integral representation

r(c)
«       *■■»=«'>-«  '^riMu'•"(■-')-"'(■-">"*•T(c-b)T(b)J0

It can be shown that (8) extends F(a, b;c; ■) analytically from fy to 6\[1, oo).

If the parameters a, b, and c are restricted so that Re c > Re(a + b), it can be

shown that F(a, b;c;z) converges as z -* 1, Re z < 1. In fact, in a thesis presented to

the Royal Society at Göttingen in 1812 Gauss showed that

(9) hm  F{a, b;c;z) = F(a, b;c; 1) = ffi^fc^ " ^
tói r(c-a)r(c-è)

for Re c> Re(a + 6). We note in (9) that F(a, b; c; 1) ¥= 0.

We recall Euler's identity which states

(10) F(a,b;c;z) = (1 - z)c~a~bF(c - a, c - b;c;z)

fore ¥= 0,-1,-2,....

Finally, we note the simple identity F(l, m; 1 ; z) - (1 - z)"m, zei

We will also need the following lemma, which follows by analytic continuation

from a lemma used in [1] to prove Theorem A.
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Lemma 1. Let Rep >0,Req>0. Then for \ x \ = \y | = 1

(\-xz)-p(\-yzy

_ T(p + g) /■'li^£l/V-'(i - /)-'[! - (tx + (i - Oj)*]-™*,

z£öD.

Main results.

r^/Don^n   r <» •» ̂ > n   r/"<
/> 1 P + Q

Theorem 1. Let Rep>0, Req> 0. // <5p ■ <$q G %+q, then p > 0, q > 0 or

p = q = \ + it for some t E R.

Proof. We will break the proof into two parts. We will first show that if Re p ¥= 1

and Re q =£ 1, then *& ■ <3q G ^p+q implies that p > 0, q > 0. In the second part we

drop the restrictions Re p ¥= 1 and Re q ¥= 1. We will there show that together the

first part and Theorem B imply that if <$p ■ <%q G ^p+q, then p > 0, q > 0 or

p = q = 1 + it for some t E R.

Partl.Rep #l,Re##l.

We may assume Re p < Re q. Suppose

(11) %'%C%+r

As observed in [2], a necessary (and sufficient) condition for (11) is

(\-xz)-p(\-yzyqE%+q,        |*| = M=1,

i.e.,

(12) (\-xz)-p(\-yz)-" = f      --l——dp(u),       \x\ = \y\=l,
•>l = i (1 - uzy   *

for some probability measure ¡x on {«||a|= 1}. If we use Lemma 1 to represent

(1 — xz)~p(\ — yz)~q and then convolve (Hadamard convolution) both sides of (12)

with the function F(\, \;p + q; ■), we obtain

Sj¿4/H - <y-'[i - &+(i - o^]-^=i t4^^(«),1 (/')l(i) yo *>l = 1 i     uz

z£öD,

which can be alternately expressed as, using (8),

(13) -r^— FÍl,p;p + q;(X~y)z) = (      -J—dp.(u),       zE<%.
\-yz   \ *     l-yz   )     ^„| = i 1 - uz

Since the roles of (1 — xz)-p and (1 — jz)~9 as first factor or second factor in (12)

may be interchanged, it also follows that

04)      TJ=^,,„ + f;ii^£)=j[H.iTrh;*(«).     '««■

From (13) and (14) we can deduce

05, Re_J_.f(1,„ + ?;i^)>', 6D,
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The proof of Part I now breaks into three cases reflecting the restriction Rep ¥= 1,

Req¥=\.

Case(i). KRep^Req.

Let x ¥= y. Since Re(p + q) > Re(p + 1), the hypergeometric function

F(l, p;p + q; w) converges at w = 1. Let z -> x radially in (15); then

(x-y)z/(\-yz)-*\

and we conclude that

(17) Re-j-^-zrFO,/,;/^?;!)^,       x*y.
i      yx ¿.

Similarly, from (16) we can obtain

(18) Rey^F^^-p + qA)^,       x^y.

Since (17) and (18) hold for all x * y, it follows that F(l, p;p + q; 1) and

F(l, q;p + q;\) are real and, in fact, that

(19) F(l,p;p + q;\)>\,       F(\, q;p + q; 1) > 1.

Gauss's theorem (9) implies

df\\      p(\   „■„  i   T.n- ILjEJJÙÏÎ3~. l)-P + g~l-ii      P
(20) Fihp,p + q,i)-np + 9_i)T^)-—rr-i+—.

Similarly

(21) F(\,q;p + q;l) = l+q/(p-l).

Together (19), (20) and (21) imply that p/(q - 1) and q/(p - 1) are real (and

positive) and then that p > 0, q > 0.

Case (ü). 0 < Rep < Re q < 1.

Let x ¥= y. Since Re(p + q) < Re(<7 + 1), the hypergeometric function

F(l, q;p + q; w) diverges at w = I. Indeed, applying Euler's identity (10) to

F(l, q;p + q; w) yields

(22) F(l, q;p + q; w) = (1 - w)p~iF(p + q-\,p;p + q;w).

Gauss's theorem (9) implies F(p + q — 1, p;p + q;w) converges at w = 1 and

F(p + q — 1, p;p + q; 1) ¥= 0. Thus, (22) implies F(l, q;p + q; w) diverges as w -» 1,

Re w < 1. In fact, if we let F(p + q - 1, p;p + q; 1) = A ¥= 0, then

F(\,q;p + q;w) ~A/(\ - w)X  "

for w sufficiently close to 1, | w |< 1. Thus,

Re-^-Flhq.,P + q.(y^\
1 -xz   \ "*"     "    1 -xz

W ~Re     '
\~XZ    [l-iy-x^/il-xz)]*-'
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for z sufficiently close to y, \ z |< 1. If we choose x = -1 and y — I, then the

right-hand side of (23) becomes

If, now, we let z -» 1 radially, then (23) and (24) show that (16) will be contradicted

unless p > 0.

Similarly, we can show that (15) will fail to hold unless q > 0.

Case (iii). 0 < Rep < 1 < Re q.

Let x ¥= y. Since Re(/? + q) > Re(/> +1), the hypergeometric function

F(l, /?;/>• + q; w) converges at w — 1. We can conclude from (15), as in Case (i), that

p/(q — 1) > 0. On the other hand, since Re( p + q) < Re(q + I), the hyper-

geometric function F(l, q;p + q; w) diverges at w = 1. Thus, we can conclude from

(16), as in Case (ii), that p > 0. It follows then that q > 0 also.

Partll. Rep>0, Req > 0.

We may assume Rep < Reg. Suppose 'S -'S G'S +. Part I implies we only

need to consider three cases.

Case(i).Rep=l,Req>\.

As in Case (i) of Part I, we can conclude p/(q — 1) > 0. Theorem B implies

p/q > 0. It follows that/7 > 0, q > 0.

Case (ii). 0 < Rep < 1, Re q = 1.

As in Case (ii) of Part I, we can conclude p > 0. Again, Theorem B implies

p/q > 0. It follows then q > 0.

Case (iii). Re p = Re q = 1.

Theorem B implies/?/# > 0. Since Rep — Re q = 1, we must have/? = q = \ + it

for some t E R.

rV>„^TT   .„„   1      r     . 1   _i -2,7     T!.Corollary 1. Let m—\+e     y. Then,

TT

(25) /, >„||*l=l    CS3CSp(Y),        0<|y|<^.
\ (\ — xz) i  * L

Proof. It is easily seen from (3), the representation formula for Sp(y), -m/1 < y

< it/2, that each function fx(z) = z/(\ — xz)m, \x\— 1, uniquely maximizes the

functional ReJx over Sp(y), where Jxg = mx g"(0), |x|=l. Hence, each fx,

\x\= 1, is necessarily an extreme point of OCSp(y), -w/2 < y < ir/2, and inclusion

holds in (25).

Theorem 1 implies for 0 <| y |< w/2 and 0 < t < 1 that <S~tm ■ %-t)m </ %„,. In

particular, the proof of Theorem 1 shows that for 0 < | y | < 7r/2 and 0 < t < 1 there

exist | x | = |.y |= i,x ¥=y, such that

(\-xzrm{\-yz)-(i-)mZ$m

which implies
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It is easily seen, however, from the representation formula (3) for Sp(y), that for

-77/2 < y < 77/2 andO < / < 1 and for allx andj>, \x \ = \y \— 1, that

ñ-V^-r^7^ G SP(V)-(\-xz)    (1 -yz)

Thus, the inclusión (25) must be proper whenever 0 < | y | < 77/2.

Remarks. (1) Recently D. Moak at Texas Tech University has shown that if t E R

and <Sx+il ■ <Sx+it G <S2+it, then t = 0. Thus, a full converse of Theorem A has been

shown to hold.

(2) We have as yet not been able to exhibit any extreme points of 5CSp(y),

0 <| y |< 77/2, other than the functions fx(z) = z/(l — xz)x+e , \x\— 1. Varia-

tional methods suggest, of course, some natural candidates.
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