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A FIXED POINT THEOREM

FOR THE SUM OF TWO MAPPINGS

OLGA HADllt

Abstract. A generalization of a fixed point theorem of Rzepecki is proved and it is

shown that in a paranormed space E this result yields, under certain circumstances,

solutions to the equation x — Tx + Sx for 7": E -» E either continuous and affine or

a generalized contraction, and S: K Q E -» E compact.

In [7] Zima proved a generalization of the Schauder fixed point theorem in a

paranormed space setting. (Paranormed spaces are nonlocally convex topological

vector spaces; see the definition below.) B. Rzepecki then proved the following

generalization of Zima's result.

Theorem 1 [6]. Let X be a Hausdorff topological vector space, K be a nonempty,

closed and convex subset of X and T be a continuous mapping from K into a compact

set Z (Z C K). Suppose that for every x G Z and every neighborhood V of x there

exists a neighborhood U of x such that

co(i/n Z) Ç V.

Then there exists x G K such that x — Tx.

This is a generalization of Tihonov's fixed point theorem since we can suppose in

the latter case, that V is convex and so that U = V in the above.

Let £ be a linear space over the real or complex number field. The function || ||:

E -» [ 0, oo ) will be said to be paranormed iff:

1. IIjcII* = 0«x = 0.

2. H-jcll* = || jc II*, for every x E E.

3. ||x + y II* < llxll* + Il y II*, for every x, y G E.

4. If ||jc„ — jc0H* ̂ OandA„-A0, then || A„xn - X0jc0||* - 0.

The function p: E X E -* [0, oo), defined by p(x, y) — \\x — y II* (x, y G E), is a

distance function on E. If (E, p) is a complete metric space, it is a Fréchet space.

Furthermore (E, || ||*) is a topological vector space and its family of neighborhoods

of zero is given by {Ke}e>0 where Ve= {x \ x G E, \\x II* < e}.

Definition 1. Let (E, || ||*) be a paranormed space and K be a nonempty subset of

E. We say that the set K satisfies Zima 's condition if there exists C > 0 such that

II Ax II* < CX || x II*, for every 0 < X < 1 and every x G K - K.
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Zima in [7] has given an example of a space E and of a set K which satisfies the

above condition.

We now proceed to a generalization of Rzepecki's fixed point theorem. (We

should point out, however, that our proof reduces to an application of Rzepecki's

theorem.)

Theorem 2. Let X be a Hausdorff topological vector space, K be a nonempty, closed

and convex subset of X, T: X -* X be an affine continuous mapping, and S: K -* X be

a continuous mapping such that S(K) is compact. Suppose that the following conditions

are satisfied:

(i) For every y Gco S(K) there exists one and only one solution x(y) G K of the

equation z = Tz + y and the set {x( y)}>,e^¡^ is compact.

(ii) For every F£% and every x ES(K) there exists U G % such that

co(( x + U)nS(K)) Çx + V, where % is the base of the neighborhoods of zero in X.

Then there exists x G K such that x = Tx + Sx.

Proof. We first prove that the mapping R: y -» x(y) (y G co S(K)) is continuous

on the set S(K ). Suppose that {ya}oea is a net from S(K ) such that lima6(S. ya~ y

and such that, for every a G &, Rya = TRya + ya. Since the set {x(y)}ves~(~K) is

compact, there exists a convergent subnet {Rya } of the net {Rya}. Thus

HmRyaß = T( KmRyaß) + lim ya, = t( lim/?yaJ + y

and so lim^ Rya is the solution of the equation z = Tz + y, which implies that

lim^j Rya = Ry. Since each subnet of the net {Rya} has a convergent subnet with a

limit Ry, it follows that lima Rya = Ry. It is obvious that R'] is continuous since

R-Xz = z-Tz       (zER(œS(K))).

Next we prove that the mapping R is affine. Suppose that a, ß > 0, a + ß = 1 and

x,, x2 EcoSJk). Then Äx, = 77?x, + x,, Äx2 = TRx2 + x2 and so «Äx, + ßRx2

= T(aRx¡ + ßRx2) + ax, + ßx2 which implies that R(axx + ßx2) — aRxx +

ßRx2. Now, since R is affine, for every convex set M Ç co S(K) the set R(M) is also

convex. This implies that R(coN) is convex and so coA(coA^) = R(coN). Since

R(N) Q R(coN) it follows that coR(N) C coR(coN) = R(coN). We define the

mapping R*: K -> K in the following way:

R*x = RSx,   for every x E K.

We now show that the mapping R* satisfies all the conditions of Rzepecki's fixed

point theorem, where the set Z is taken to be the compact set R(S(K)). Let V E %

and x G R(S(K)). We shall prove that there exists U E % such that

co((x+ Í/) nR(S(K))) Cx+ V,   for every xER(S(K)).

Since x G R(S(K)), there exists u ES(K) such that x = Ru. The mapping R is

continuous at the point u and so there exists V E % such that

R((u + V) n wS{K)) C Ru + V.
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Furthermore, from (ii) it follows that there exists U' G % such that

(1) co((u+ V) n S{K)) Qu+V.

From (1) it follows that

r(co((u + U') n S(K))) C R((u + V) n œS(K)) CRu+ V

and since R is a one-to-one mapping

(2) co(r(u+ U') DR(s(K))) ERu+V.

The mapping R'x is continuous, and so there exists U E %. such that

Rx{Ru + t/) Ç R-\Ru) + U' = u+ U',

and thus (Ru + U) n R(S(K)) C R((u + U') n (S(/<:)))• From (2) we conclude

that

co((Ä« + U) n ä(S(#))) ç am + VA

and so the mapping R* satisfies all the conditions of Theorem 1. This implies that

Fix(Ä*) ¥> 0 and, since Fix(Ä*) Ç Fix(T + S), it follows that Fix(7 + S) * 0.

Corollary 1. Lei (£, || II*) ¿>e* a paranormed space and K be a nonempty, closed

and convex subset of E. Let T: E -> E be a continuous and affine mapping, S: K -> E

be a continuous mapping such that S(K) is compact and satisfies Zima's conditions,

and suppose for every y Eco S(K) there exists one and only one solution x( y) G K of

the equation z = Tz + y with {x(y)}yes7KJ compact. Then there exists x G K such

that x = Tx + Sx.

Proof. It is easy to see that, since S( K ) satisfies Zima's condition, the condition

(ii) of Theorem 2 is satisfied and so there exists x G E such that x = Tx + Sx.

Definition 2. [5] Let (X, d) be a metric space and T: X -* X. The mapping T:

X -» Xisa generalized contraction iff d(Tx, Ty) < L(r, s)d(x, y),for every x, y E X,

r < d(x, y) * s, where the function L is defined for every (r, s) E (0, oo) X (0, oo)

such that r < s and L(r, s) < 1.

Remark. The fixed point theorem of [5] for generalized contractions, which we

use below, is also an immediate consequence of the fixed point theorem of A. Meir

and E. Keeler [4].

From Corollary 1 we can derive the following corollary.

Corollary 2. Let (E, || ||*) be a paranormed space, K be a nonempty, convex and

complete subset of E, T: E -> E be an affine generalized contraction mapping, S:

K-* Ebe a compact mapping such that T(K) + co S(K) C K, the set S(K) satisfies

Zima's condition and the set (I — T)'lS(K) be bounded. Then there exists x E K

such that x = Tx + Sx.

Proof. Since T(K) +coS(K) C K and T is generalized contraction for each

y G co S(K) there exists one and only one element Ry E K such that Ry = TRy + y

([5]; cf. [4]). It remains to be proved that the set {Ry}yes[K) *s compact. To do this

we shall show that the mapping R is continuous. Suppose that {xn}n(EN CS(K) and
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that limn^00xn = x. If, on the contrary, the mapping R is not continuous, then there

exists e > 0 and a sequence {n(k)}keN C N such that

\\Rx„a) - Axil* s*e       (n{k) » k, for every k E N).

Since the set (/- TYXS(K) is bounded, there exists K' > 0 such that || Ry II* < K',

for every y G S( K ), and so for every k E N,

\\Rx„{k)- Rx\\*<2K'.

This in turn implies that

(3)    \\Rxn{k)-Rx\\*^L(e,2K')\\Rxn(k)-Rx\\* + \\xn(k)-x\\*,       k E N.

Since (llÄxn(/t) — Rx\\* \ k E N) C [e,2K'], there exists a subsequence {xn(kir))}r(EN

such that

m = lim \\Rx„(k(r)) - Rx\\*
r—oo

and so, from (3), we have

m ^L(e,2K')m <m

which is a contradiction.

We shall now give an application of Theorem 2 which refers to the existence of a

solution to the equation x = Tx + Sx in ^-paranormed spaces [2]. We begin with

some notations and definitions. We shall subsequently denote the set of all real

numbers by R. Furthermore, let £ be a vector space over % (real or complex number

field) and R^ be the set of all mappings from A into R. The Tihonov product

topology and the operations of + and scalar multiplication are as usual. If /, g E R

we say that/*? g iff/(í) *£ g(t), for every f G A, and by PA we shall denote the cone

of nonnegative elements in RA.

In [2] S. Kasahara introduced the following notion of paranormed spaces, which

we shall call a $ paranormed space.

Definition 3. The triplet (E, || |j, 4>) is a 4> paranormed space iff \\ ||: E -» PA and

3> is a linear, continuous, positive mapping from RA into RA such that the following

conditions are satisfied:

1. Ilxll =0«x = 0.
2. || Xx || = | X | ||x II, for every x E E and every X E %.

3. ||x + y|| *¿ ®(\\x\\) + ®(\\y\\),for every x, y E E.

Let % denote the family of neighborhoods of zero in RA. For each U E % we

denote the set (x | x G E, \\x\\ E U] by Vv. Then £ is a topological vector space in

which {Yuyu^sn is the family of neighborhoods of zero in E.

In [2] it is proved that every Hausdorff topological vector space is a O paranormed

space (E, || II, 4>) over a topological semifield jRa.

Definition 4. Let (E, || II, $) be a $ paranormed space over a topological semifield

/?A and K C E. If for every n G N, every u¡ E K — K (i = 1,2,...,ft) and

(sx,s2,...,s„) G R" such that s, G [0,1] (i = \,2,...,n) and^=]si - 1,

1

we say that the set K is of $>-type.

stu¡ < 2*i*(n«iii).
i=i
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In [3] Matusov used Kasahara's result in order to prove a fixed point theorem.

Let % be the family of neighborhoods of zero in R& and i/6%. Then (x | x G E,

II x || G t/} is a neighborhood of zero Vy in E and let us denote the family {V^u^

by <&/. Suppose now that AT is a subset of E and that K is of $-type. We prove that

for every V € %' there exists V G %' such that for every x E K

co((x+ V) n K) E x + V.

Since F G %', there exists /i = (f,, i2,... ,t„) Ç A and e > 0 such that

Hull EU^^uEV

where t^ E = {x \ Ilx 11(f) < e, for every t G A}. Since the mapping $ is linear and

continuous there exists V = Vv, such that

uE r~*(Hw|t) G 1/e.

It is easy to see that

co((x + V) <1 K) Ex+ V,    for every xEK.

Indeed, suppose that u E co((x + V) n K). Then u = 2"=, X,x, where x, G (x +

V')nK(i= l,2,...,n),Xi>0(i= l,2,...,«)and2f=,X,= 1. Thus

II« - *H(0 =    2 X(x, - x) (/) < 2 A,$(llx,. - x||)(f) < e,
i= 1 /= 1

for every t G /*, and so  ||w — x|| G U^ e. This implies that u — x E V and so

uEx+ V.

Now, we can formulate the following corollary.

Corollary 3. Let (X, || ||, $) be a 4> -paranormed space, K be a nonempty, closed

and convex subset of the space X, T: X -» X be an affine continuous mapping, and S:

K -* X be a continuous mapping such that S(K) is compact and of $-type. Suppose

also that the condition (i) of Theorem 2 is satisfied. Then there exists x E K such that

x = Tx + Sx.
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