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THE BIDUAL OF C( X, E)

MICHAEL CAMBERN AND PETER GREIM

Abstract. In this article we obtain, under certain conditions, a characterization of

the bidual of the space C(X, E) of continuous functions on a compact Hausdorff

space X to a Banach space E. It is shown that if X is dispersed and E is arbitrary, or

if X is arbitrary and E* has the Radon-Nikodym property, then C( X, E)** can be

represented as a space of continuous functions on a compact Hausdorff space Z to

£** when the latter space is given its weak* topology.

1. Introduction. Through this article, the letters E and F will denote Banach

spaces, while X and Z stand for compact Hausdorff spaces. Given E, K will denote

the one-dimensional Banach space consisting of the corresponding field of scalars.

The interaction between elements of a Banach space E and those of its dual space is

denoted by ( • , • >. We will write E ^ F to indicate that the Banach spaces E and F

are isometric. £{E;F) is the space of bounded linear operators on E to F.

Given X and E, C(X, E) will denote the space of continuous functions on X to E

provided with the supremum norm. If F is a dual space, C(X, (F, a*)) stands for the

Banach space of continuous functions G on A' to F when this latter space is provided

with its weak* topology, again normed by \\G\\œ = supxeA.||G(x)||. In the case of

scalar-valued functions, a characterization of the bidual of C(X, K) was first

obtained by Kakutani [7], who showed that C(X, K)** is of the form C(Z, K), for a

certain compact Hausdorff space Z. This result has also been derived and discussed

by other authors using various techniques—see, for example, [1, 5, and 8]. In [1, 5, 7

and 8] it is assumed that K is the real field R, but proofs for K = C have been

circulated among functional analysts for at least two decades.

The characterization of the first dual of C(X, K) is of course given by the Riesz

representation theorem, which states that C(X, K)* is the space M(X, K) of regular

Borel measures /x on X to K with finite variation | ju. |. The vector analogue of this

result was provided by I. Singer, who showed that C(X, E)* is the space M{X, E*)

of all regular Borel vector measures m on X to E*, with finite variation \m\ [10], An

English version of this result can be found in [11, p. 192] or [4, p. 397]. In this paper

we give, under certain restrictions on X and E, a characterization of C(X, E)** as a

space of continuous vector-valued functions, providing a vector analogue of

Kakutani's result.

Given any X and F, M(X, F) will always denote the Banach space of regular

Borel vector measures m on X to F with finite variation I m I. There is a natural
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injection of M(X, K) ® F into M(X, F) determined by ju <8> <b -> ¡x(■ )tj> for jtt G

M(X, K) and </> G F. In our notation we identify M(X, K)® F with its image

under this injection, thus treating M( X, K ) ® F as a subspace of A/XX, F). In §3 we

prove that under the condition

M(X, K)®E*   is dense in   M(X, E*),

then C(X, E)** is of the form C(Z,(E**,a*)) (Theorem 2). In §2 we obtain

conditions on a compact space X and any Banach space F which insure that

[M(X, K) ® F]~= M(X, F). It is shown this equality always holds if X is disper-

sed, or if F has the Radon-Nikodym property.

Given a measure space (Y, 2, ju), we will denote the space L'(Y, 2, /x, AT ) by

L\n, K). And the space of (equivalence classes of) jt-integrable functions on Y to a

Banach space F will be denoted by L\\i, F). For a measurable space (Y, 2),

m(y, 2, AT) denotes the Banach lattice of all measures ¡u: 2 -> K. For measures fi

and p, v « ju means that p is absolutely continuous with respect to /i. For ¿i G

m(Y, 2, AT) and A E 2, P^/t will denote that element of m(Y, 2, K) defined by

PA[i(B) = n(A n 2?), for B E 2. Given compact X, /? will denote the a-algebra of

Borel subsets of X. We note for future reference that M( X, K ) is a closed ideal in

m(*,/8,tf)[9,p.46].
If (7, 2, ju) is any measure space, we denote by M(¡i) the closed ideal in

m(Y, 2, R) consisting of all v E m(Y, 2, R) such that v « ju. And for a given Banach

space F, we denote by M(¡i, F) the space of all /¿-continuous, F-valued measures on

2 with finite variation.

Throughout, scalar measures are denoted by ju\, v and vector measures by m. Facts

about vector measures used in this paper are found in [3] and [4]. Our notation and

terminology concerning lattice theory are consistent with that of [9]. In notation

concerning tensor products and their completions we follow Chapter 8 of [3].

2. Topological and Banach space considerations.

Lemma. Given measurable spaces (Y, 2) and (Y\ 2'), let M and M' be closed ideals

in m(Y, 2, R) and m(Y', 2', R) respectively, and assume that there exists an isometry T

mapping M onto M' such that T is order preserving. Then for each Banach space F

{real or complex) there exists an isometry TF mapping MF onto M'F, where MF (resp.

M'F) denotes the Banach space of all F-valued measures m on 2 (resp. 2'), with finite

variation \ m \, such that \m\E M (resp. M'). Moreover, TF has the property that

| TFm | = F | m | for each m E MF.

Proof. Let /ibea positive element of M and let A' E 2' be given. We claim first

of all that the measure \iA. defined by \iA. = T'\PA,Tfi) is equal to P^jti for some

A G 2. For T\i = PAT\i + PY,_A,T\t., and the elements on the right-hand side are

disjoint. Since F"1, like T, is order preserving, it preserves disjointness and thus

¡i = T~]T[i — \iA. + Hy'-a1' with the summands on the right again disjoint. We let A

and Y — A be a Hahn decomposition for the measure v = fiA. — fiY,_A, [6, p.

121]—i.e. A is positive and Y — A is negative with respect to v. Then \la, < í^y-a'
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on Y — A, and since trivially fiA- < nA, on Y — A, we have Py-aPa' *

py-a(Pa- a Py-a') = 0- Hence /V = -P/i/V- Similarly iir_^ = Py_i4/iy._/4- so that

the equation it = fiA, + ilY'-a' gives ¡iA. = P^/x.

We define «1^: 2' -» 2 by ^(A') = >4, where /I' and A are related as above. It is

clear that $ is well defined up to it-equivalence, and it is a straightforward matter to

check that 4> is a Boolean algebra isomorphism of 2'/Fii (2' modulo Fit-null sets)

onto 2/ii.

Now in m(Y, 2, R), tixx = {y G w(T, 2, R): v « it} [9, p. 45]. And the fact that M

is an ideal insures that the inf in M of two elements belonging to M is also their inf

in m(Y, 2, R). Thus the bipolar in M of a subset of M is the intersection of M with

the bipolar taken in m(Y, 2, R). From this, and the fact that F preserves the relation

of orthogonality, it follows that if v is a positive element of M with v < ii, then

Tv « Tfi. Thus if A and /T are as above, the fact that we have PATv « PaT\l implies

that

vA. = T-\PA,Tv) « T-\PA.Tp) = PAp.

From this it follows readily that ®„(A') n (Y - A) and <S>V(Y' - A') n A are p-null

sets so that <&P(A') = ^(A') a.e. v.

Next let m E MF. Then the equation TFm — m ° <b^ defines a vector measure

TFm on 2'. And by what we have established in the preceding paragraph it follows

that

(1) TFm = m ° %

for all positive ii G M with | m |« it. Obviously we have | w ° $|m|| = | w | ° 0|m|.

Moreover F | m | = | m | ° $¡m¡, since for positive measures it G M and /l' G 2' we

have

it ° %(A') = mK^')) = ^M .^(y) = H^H)Mll

= ll^.3>||=^7ii(r) = 7Jt(^).

It thus follows that

(2) | TFm | = F | m \ .

It remains to show that TF is linear and maps MF onto M'F. Thus given

w,, w2 G MFwe set it =| w, | +| m21. Then by (1) we have

TF(m, + m2) = (w, + m2) ° % = mx ° % + m2 ° cE^ = 7>iw, + F,,m2.

Clearly for m E MF and scalars A, we have TFXm = XFfm. Finally, TF is surjective

since it has (F"')f as its inverse. For given m' E M'F we have TF((T'l)Fm') =

((T^)Fm') o *|(r.i)(riBl, which by (2) is equal to

((F-')fm') ° *r-V| = w' ° $,'m1 ° $r-V|,

where $|'m| is the Boolean algebra isomorphism of 2/F"'|w'| onto 2'/| m' \

determined by the equation

T(PAT-' | m' |) = P^^, | m' |    for A G 2/F'1 | m' |.

A check that <b!m., is equal to if-i.^i then completes the proof of the lemma.
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Corollary 1. Given any compact Hausdorff space X and Banach space F, there

exists a measure space (Y, 2, it) such that M(X, F) is isometric to M(ii, F).

Proof. M(X,R) is an abstract V space. Hence [9, p. 135], there exists a measure

space (Y, 2, ii) such that M(X,R) is isometric and lattice isomorphic to the space

L'(ii,R). The measure space (Y, 2, it) is not, in general, a-finite. However (see the

proof of Theorem 2 on pp. 135-136 in [9]), the space is "strictly localizable" by

which we mean that Y is the disjoint union of measurable sets Yf, i E I, with

fi(Y¡) = 1 for each i, and it is the sum of its restrictions to the sets Y¡—ju(¿?) =

2,e/ii(y, n B) for all fiel Clearly the indefinite integral defines an isometric

embedding of L'(it,R) into M(ii). And if v E M(ii), since | v | is finite there are at

most countably many Y¡ with | v \ (Y/) 7= 0. Thus the Radon-Nikodym theorem [6, p.

128] implies that L'(it, R) is isometric and lattice isomorphic to M(i±). We thus have

established the existence of an isometry of M(X,K) onto M(¡i) which is order

preserving. If, in the notation of the lemma, we take (Y, 2) to be the (Y, 2) of this

corollary, (F, 2') to be (AT, <S), and take M = M(ii) and M' = M(X, R), then since

a vector measure m is regular iff its variation | m | is regular, it follows that

MF = M(n, F) and M'F = M(X, F), thus completing the proof.

Corollary 2. Let X be compact Hausdorff and Fa Banach space. Then M(X, K)

® F can be embedded in M( X, F) in such a way that v ® <f> corresponds to v( ■ )(j> for all

v E M(X, K)and<t> G F.

Proof. Since M(X, K) ^ L'(it, K), for the measure 11 of [9, p. 135], M(X, K) ® F

is isometric to F'(ii, K) ® F which is isometric to F'(ii, F) [3, p. 228]. F'(it, F) is

canonically embedded in M(fi, F) which is isometric to M(X, F) by Corollary 1.

One readily checks that v ® <b is mapped onto v( ■ )<j> by this sequence of isometries.

Theorem 1. Let X be a compact Hausdorff space.

(a)IfX is dispersed, then M(X, F) = [M(X, K) ® F]~ for all Banach spaces F.

(b) // X is not dispersed, then M(X, F) = [M(X, K) ® F Y iff F has the Radon-

Nikodym property.

Proof, (a) follows directly from [9, p. 52].

For (b), first assume that F has the Radon-Nikodym property. Then the canonical

embedding J: L'(it, F) -* M(it, F) is onto. For although the Radon-Nikodym

property is usually formulated with respect to finite measure spaces [3, p. 61], the

fact that our measure space is strictly localizable gives the desired result via an

argument analogous to that used in the proof of Corollary 1. Thus the embedding of

Corollary 2 is onto. Since M( X, K ) ® F viewed as a subspace of M( X, K ) ® F is

dense in M(X, K) ® F, M(X, K) ® F as a subspace of M(X,F) is dense in this

latter space.

Conversely, suppose that [M(X, K) ® F]~= M(X, F). Then the embedding of

Corollary 2 is onto and thus J is surjective. That is, F has the Radon-Nikodym

property with respect to 11. Since X is not dispersed, by [9, p. 52] there is a purely
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nonatomic measure in M(X, K), and thus in the isometries established in [9, pp.

135-136],

M(X,K)^Ll(n,K)^ l\T,K)® (e  2  L\va,K)
IJl

where F is a set of infinite cardinal numbers a, and v" is Lebesgue product measure

on [0, l]a, the index set I' cannot be void. Hence there exists a measurable subset

Y/QY with Xy ' ¿'(M* K) — L^v", K) for some a. Thus, if 2, is the a-algebra given

by 2, = {A n Y¡: A E 2}, it |2 is purely nonatomic and F has the Radon-Nikodym

property with respect to it |2 . Thus, by [2, p. 26], F has the Radon-Nikodym

property with respect to Lebesgue measure on [0,1]. Consequently [3, p. 138] F has

the Radon-Nikodym property.

3. Characterization of the bidual. We now characterize the bidual of C(X, E)

under the assumption that M(X, K) ® E* is dense in M( X, E*), which we have just

seen is equivalent to the assumption that X is dispersed or E* has the Radon-

Nikodym property.

Theorem 2. Let X be a compact Hausdorff space and E a Banach space with

M(X,E*) = [M(X,K)®E*]~. Then C(X, E)** is isometric to C(Z,(E**,a*)),

where Z is that compact Hausdorff space such that C(X, A")** - C(Z, K).

Proof. By Singer's result C(X, £)* = M(X, E*). And we know by Corollary 2

that M(X,K)®E* is isometric to the closure of M(X, K) ® E* in M(X, E*).

Hence M( X, K) ® E* =* M(X, E*) by our hypothesis. Thus

C(X, E)** - M(X, E*)* ^[m{X, K) ® E*]* ^[E* ® M(X,K)]*.

But by [3, p. 230], this latter space is isometric to t(E*;M(X, A")*) =¡

£(E*;C(Z, K)).
We define a map F from t(E*;C(Z, K)) to the space of functions on Z to E**

by

(<t>,{T*)(z)) = (ó\ o *)(<#>),    for* G E*,z G Z,

and * G £(F*;C(Z, A")), where 5. denotes the point evaluation at z G Z. Clearly,

for fixed z E Z, (F*)(z) is a linear functional on E* with, for * G E*,

| <*,(F*)(z)>| = | (*♦)(*)!< 11**11«, < 11*11 11*11.

That is, (TV)(z) E E** and ||(F*)(z)|| < ||*||. Clearly as a function from Z to

£** (F*)(-) is weak* continuous, since for all ¿> G F*, (<f>,(F*)(•)>= (**)(•) G

C(Z, A). Hence F is a mapping from t(E*; C(Z, K)) to C(Z,(E**, a*)). Obvi-

ously F is linear and we have already seen that

IIF^IU = sup ll(F*)(z)|| =£ ||*||, i.e., Iim < 1.

We wish to show that F is an isometry oí t(E*;C(Z, K)) onto C(Z,(E**, a*)).

To this end we first show that F is norm-preserving. Suppose we are given e > 0 and
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* G £(£*; C(Z, K)), * # 0. Choose * G E* with ||*|| = 1 such that 11**11«, »
II * II - e. Then choose z G Z such that | (**)(z) | = II ** II „. Then

117"* ||„ > ||(F*)(z)|| »| <*,(F*)(z)>| = | (**)(z) |> ||*|| - e.

Thus F is isometric.

Finally, we show that Fis surjective. Let G G C(Z,(E**, a*)) be given. Define *

on E* by (**)(z) = <*, G(z)) for * G E* and z G Z. Clearly (**)(•) G C(Z, A")

and * is a linear map from E* into C(Z, A"). It is bounded since

||**||00 = sup|<<í»,G(z)>|<l|G||0O||<í»||.
;ez

Finally, using first the definition of F, then that of *, we have, for all z G Z and

* G E*, <*,(F*)(z)> = (**)(z) = <*,G(z)>. That is, F* = G.
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