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EARLY COEFFICIENTS OF THE INVERSE

OF A REGULAR CONVEX FUNCTION

RICHARD J. LIBERA AND ELIGIUSZ J. ZLOTKTEWTCZ

ABSTRACT. UBing known properties of functions of positive real part it is

shown that the first seven coefficients of the inverse of a regular univalent

function mapping the disk onto a convex region are bounded by 1.

1. Introduction. If f(z) is in the class 5, then

(1.1) f(z) = z + a2z2 + a3z3 + ...

in the open unit disk A and f(z) is one-to-one on A. The inverse of f(z) has a

Maclaurin expansion in a disk of radius at least |, say

(1.2) f(w) = w + l2w2 + i3w3 + • • • •

It has been conjectured [1] that the Koebe function k(z) = z + J2k'=2 hzk provides

sharp bounds for all coefficients of f(z), (1.1) and it has been shown that its inverse

does provide the best bound for all \fk\, k = 2,3,..., over all members of S, [8].

Recently, Smale [9] made use of these ideas in developing a method for finding a

zero of a complex polynomial.

Let K be the subclass of S containing all functions f(z) for which /[A] is a

convex region. It is known [6] that for f(z) in K, \ak\ < 1 for all k and that (except

for a rotation of A) the function T(z) = z/(\ — z) = J2kL=i z>c renders all these

bounds sharp. Since T(z) appears to have the same relation to K as k(z) does to

5 it is reasonable to expect T(z) to provide bounds for the inverses of functions in

K. However,
CO

converges in A, whereas there are functions f(z) in K for which (1.2) converges

only in disks of radius $ + e, e > 0; and for these, (1.2) cannot have bounded

coefficients. These observations have been discussed elsewhere [3 and 4]. In an

explicit demonstration Kirwan and Schober [3] show that for some f(z) in K, \in\ >

1 for n > 10. It is our purpose to examine bounds for \^n\ when n is small.

THEOREM. For all f(z) in K, |-y„| < 1, n = 2,3,4,5,6,7, and these bounds are
sharp.

Our method of proof is classical and highly computational; in §2 we outline our

methods and reproduce earlier and known results as lemmas and in §3 we outline

the computations themselves.
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(2.2)

2. Preliminary results. Using representations (1.1) and (1.2) together with

f(J(w)) = WOT

(2.1) w = f(w) + a2(f(w))2 + a3Cf(w))3 + ...,

we obtain the relationships

72 + a2 = 0,    73 + 2a273 + <*3 = 0,

74 + az(72 + 273) + 3o372 + a4 = 0,

75 + 02(274 + 27273) + as(373 + 372) + 4a472 + a5 = 0,

76 + a2(275 + 27274 + 73) + «3(67273 + 374 + 7Í)

+ 04(67?, + 473) + 5o572 + a6 = 0 and

17 + o2(276 + 27275 + 27374) + 03(375 + 67274 + 37§ + 372S)

+ a4(474 + 127273 + 4^) + 05(573 + 10t£) + 60,572 + a7 = 0.

Let P be the family of all functions P(z) regular in A for which Re{P(z)} > 0

and

(2.3) P(z) = l+Clz + c2z2 + ...

for z in A. Then we know that f(z) is in K if

(2.4) zf"(z) = f(z)[P(z)-l}

for some P(z) and P and conversely. (2.4) is equivalent to the relations

(2.5) n(n — l)on = c„_i + 2cn_2a2 -\-\- (n — l)ciOn_i.

Successively eliminating Ofc's on the right side of (2.5) yields

'2o2 = ci,    603 = c\ + c2,    24a4 = 2c3 -f 3cic2 + c\,

120a5 = 6c4 -(- &c\c2 + 8cic3 -f 3c^ + c\,

720o6 = 24c5 + 30cic4 + 20c2c3 + 20c?c3

(2.6) I + 15cic^ + 10cfc2 + c\ and

(42)(120)o7 = 120c6 + 144cic5 + 90c2c4 -f 90c2c4

-I- 40c2 + 120cic2c3 + 40c?c3 + 45c2 c2

+ 15c!-f-15cic2 + c?.

Combining (2.2) and (2.6) makes it possible to express the 7„'s as polynomials

in the Cfc's, as is done in the next section. This then reduces the proof of Theorem

1 to a study of bounds on polynomials in the coefficients of functions in P. For this

purpose we assemble the results which follow.

LEMMA 1.  IfP(z) is in P and as in (2.3), then \ck\ < 2 for each k.

This is a well-known result (see p. 41 of [6], for example).

LEMMA 2.  IfP(z) is in P and s is a natural number, then

(2.7) |cn —cn_scs| < 2,        n > s,n = 1,2,3,....

This result is due to A. E. Livingston [5].
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Lemma 3.  For P(z) in P, the expressions

c2 = lcî —C2I,     c| = \c\ — 2CiC2 + C3|,

c4 = lcí + c2 + 2cic3 — 3cfc2 — c4|,

(2.8)       < C5 = \c\ -f 3cic^ + 3cjc3 — 4c?c2 — 2cic4 — 2c2c3 + c5|, and

Cs = ki + 6c2c?, + 4c?c3 + 2clC5 + 2c2c4 + c\-c\

— 5c*c2 — 3c2 c4 — 6cic2c3 — c6|

are all bounded by 2.

The last lemma is obtained by an application of Lemma 1 to the reciprocal of

P(z) which is also in P. The function

(2.9)

00 1   |

PoW = 1 + £ 2*fc = T3Í
fc=l l    z

is one for which all inequalities in the above are sharp.

The last result we call upon is due to Carathéodory and appears in [2].

LEMMA 4.   The power series for P(z) given in (2.3) converges in A to a function

in P if and only if the Toeplitz determinants

(2.10) Dn =

2        Cl

c-i    2

-n+l

C2

Cl

C_

Cn

Cn—1

n+2

n = 1,2,3,.

and c—k = ck, are all nonnegative. They are strictly positive except for P(z) =

Z)fcLi PkPo(eltkz), Pk > 0, tk real and tk y¿ tj for k ^ j; in this case Dn > 0 for

n < m — 1 and Dn = 0 for n>m.

3. Proof of the theorem. Eliminating coefficients ak in (2.2) and (2.6) we obtain

272 = -ci,    673 = 2c?-c2,    2474 =-6c? + 7clC2 - 2c3,

12075 = 24c? — 46c?c2 + 22ciC3 + 7c?, — 6c4,

72076 = —120cf + 96c4ci + 50c2c3 + 326c?c2 — 202c?c3

— \21cxc\ — 24c5 and(3.1)

(120)(42)77 = —120c6 + 528cic5 + 1864c?c3 + 1740c2 c\

+ 720cf + 246c2c4 + 100c§ — 1182cf c4

— 1292c!C2C3 — 5656cic2 — 127c^.

Using Lemmas 1 and 3 and the first four relations in (3.1) we have

2|72| < |ci| < 2,

6|73|<|ci|2 + |c2-c2|<4 + 2 = 6,

24|74| < 2|c? - 2clC2 +c3| + |Cl|3 + 3|ci| ■ |c2 -c2|

< 4 + 8 + 12 = 24
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and
120|7s| < 6|c? + 4 + 2Clc3 - 3c2c2 — c4\

H-10|d| • |c3 — 2clC2 -hcfl

+ 8|c2|.|c2-c2| + |c2|2

< 12 + 40 + 64 + 4 = 120.

These computations give correct bounds on |7fc| for k — 2,3,4,5; we now make use

of all four lemmas to obtain the proper bound on |-y6|.

Again, from (3.1), we have

720|76| < 24|c5 + c\ + 3cxc^ + 3c2c3 — 4cjc2 — 2cic4 — 2c2c3|

f3 2) + 48|Cl| • |cí + c\ + 2cic3 - 3c?c2 - c4|

+ 34|c1|2-|c3-2c1c2 + c?|

+ 2|c2| • |c3 - clC2| + |14cf + 5ci<$ - 18c?c2|.

Using Livingston's Lemma (2, above) we see that |c3 — cic2| < 2 and conclude that

(3.3) 720|76| < 520 + 2max\Uc\ + 5<£ — 18c2c2|,

the maximum being taken over all admissible coefficients ci and c2. We may assume

without restriction that ci > 0, then from (2.10) we obtain

2    ci   c2

(3.4) D2 = c,    2     ci  = 8 + 2 jee{c2c2} — 2|c2|2 — 4c2 >0

C2     Cl     c

from which we conclude that

(3.5) 2c2 = c2 + a;(4-C2),

for some x, \x\ < 1.

Now, using this representation for c2 in the expression to be maximized in (3.3),

we write

|14cí + f [cí + 2z(4 - c2)c2 + x2(4 - c2)2} - 9c* - 9xc2(4 - c2)|

r3 6Ï =W4- ¥*c?(4 - <?) + (4 - c\)2x>\
1    J <¥ci + ^(4-c2)c2 + (4-c2)2

= Icf + 18c2 +16 < 100.

(3.6) and (3.3) together show that |76| < 1.
From the last relation in (3.1) it follows that

(120)(42)|77| < 120cJ + 288|Cl| • c* + 246|Cl|2C;

(3-7) + 28|c,|3c; + 10|Cl|4c; + 20|c3| • |Clc2 -c3|

+ 6|c2| • |c4| + |28cf + 64c,c2c3 - 90c2c?, — lc\\.

AU but the last term can be bounded correctly by bounds given in the first three

lemmas above. Let

A = |28cf + 64cic2c3 — 90c2c?. — 7c||.

Using Caratheodory's criterion we will show that A < 808.

We may assume without restriction that 0 < ci < 2. Furthermore, if 0 < ci <

1, then it is easy to see that A < 700.
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Suppose, now, that ci = c and 1 < c < 2, then some computation and proper

grouping shows that D3 > 0, in (2.10), is equivalent to

rs g\ I(4C3 ~ 4c°2 + c3)(4 ~ °2) + C(2C2 - °2)2¡

{'} <2(4-c2)2-2|2c2-c2|2.

Making use once again of (3.4) and (3.5) we rewrite (3.8) as

(3.9) 4c3 = c3 + 2(4 — c2)cx — c(4 — c2)x2 + 2(4 — c2)(l — \x\2)z,

for some z with |z| < 1. Using (3.5) along with (3.9) we get

8A = |101c6 - 184c4(4 - c2)x - c2(4 - c2)(292 - 9c2)x2

- (4 - c2)2(28 + 57c2)x3 + 128c(4 - c2)(l - |x|2) • (c2 + x(4 - c2))z\

and an application of the triangle inequality shows that

8A < [101c6 + 128c3(4 — c2)]

+ c(4-c2)[512-128c2 + 189c3]p

l'    ' +c2(4-c2)[289-128c-9cV

+ (4 - c2)[28 - 128c + 57c2]p3,

with p = |x| < 1. Let F(p) be the third degree polynomial on the right side of

(3.10), then

F'(p) = (4 - c2){512c - 128c3 + 189c4 + 2[289c2 - 128c3 - 9c4]p

+ 3(4 - c2)[28 - 128c + 57c2]p2}.

F'(p) is a quadratic in p with F'(0) > 0, F'(l) = (4 — c2)(336 — 1024c +1178c2) >
0 and a negative coefficient for p2, consequently F is increasing and Max^T^p) =

F(l). Now let

G(c) = F(l) = 448 + 1844c2 + 3c4 — 22c6,

then G'(c) = 2c(1844+6c2—66c4) > 0, so it follows that G(c) < G(2). This shows
that the upper bound for (3.10) corresponds to p = 1 and c = 2, in which case

8A < (101)(64) and A < 808 for all admissible c. This concludes the proof of our

theorem. All inequalities are rendered sharp by choosing Ck = 2, k = 1,2,3,_

4. Concluding remarks. Recently [7], Prokhorov and Szynal showed that |7n| <

1, n = 2,3,4. For n = 2,3 their method is essentially the same as ours; for n = 4,

however, they make use of Lemma 4, above, whereas our method relies solely on

Lemmas 1 and 3. It appears, then, that our proof for n = 4 is more elementary

than theirs.

Kirwan and Schober [3] gave an upper bound for |74| and showed explicitly that

Aio = 1.248... < for a given choice f(w), i.e., f(z) in K. It is likely that |7„| < 1
for n = 8,9.

The methods we have used above, particularly for n = 5,6,7, require very

delicate arrangement of the representations given in (3.1) so that the triangle

inequality and the lemmas of §2 can be used. Applying the same techniques to

7s and 79 presents technical difficulties which may be too difficult to overcome: for

in addition to the question of finding a suitable way of writing the representation

in terms of coefficients ck, one is faced with the necessity of making use of relations

like Dn > 0, n = 2,3,4,5.
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