A NOTE ON INFINITE LOOP SPACE MULTIPLICATIONS

RAINER M. VOGT

ABSTRACT. A monoid M is known to be abelian iff its multiplication $M \times M \to M$ is a homomorphism. We prove the corresponding result for homotopy-everything H-spaces, e.g. infinite loop spaces: For a homotopy-everything H-space X each n-ary operation $X^n \to X$ is a homotopy homomorphism, i.e. a homomorphism up to homotopy and all higher coherence *conditions*.

In [1] and [2] J. M. Boardman and I proved that an H-space X is an infinite loop space iff its multiplication enjoys nice properties concerning associativity and commutativity. These properties were described in terms of universal algebra, and the necessary and sufficient condition for X to be an infinite loop space essentially boils down to the fact that the morphism spaces $\mathcal{E}(n,1)$ of the PROP \mathcal{E} encoding the H-structure of X be contractible (for the definition of a PROP see [2, Definition 2.44]). Dropping all unnecessary structure of a PROP, P. May in [4] introduced the simpler notion of an operad and obtained the corresponding result on infinite loop space structures more directly. Using his terminology we call \mathcal{E} and \mathcal{E}_{∞} -PROP if each $\mathcal{E}(n,1)$ is contractible and Σ -free if the operation of the symmetric group Σ_n on $\mathcal{E}(n,1)$ makes $\mathcal{E}(n,1)$ a numerable principal Σ_n -space. An \mathcal{E}_{∞} -space X is an H-space whose structure is given by an action of an \mathcal{E}_{∞} -PROP on X.

Let \mathcal{E} be an E_{∞} -PROP and X an \mathcal{E} -space. There is a canonical product action of \mathcal{E} on the k-fold product X^k . Each element $\chi \in \mathcal{E}(k,1)$ defines a map $\chi: X^k \to X$. It is the purpose of this note to show

THEOREM. Suppose \mathcal{E} is a Σ -free E_{∞} -PROP or each $\mathcal{E}(n,1)$ is Σ_n -equivariantly contractible. Let $\chi \in \mathcal{E}(k,1)$ and X be an \mathcal{E} -space. Then $\chi: X^k \to X$ can be extended to a homotopy \mathcal{E} -map in the sense of [2, Definition 4.2].

T. Lada tried in [3] to prove a result of this kind but only succeeded in the case k = 2 and $\mathcal{E} = \mathcal{Q}$, the little cubes PROP of [2,2.49]. His proof is given by a number of explicit formulas depending on the geometry of the spaces of little cubes. Our proof of the theorem is an easy consequence of the theory of [1] and [2]. We use the terminology of [2, Chapter III, IV].

Let \mathcal{E} be an arbitrary PROP and X and \mathcal{E} -space. Then \mathcal{E} operates on X^k by

$$\alpha: (X^k)^n \stackrel{\tau_{n,k}}{\to} (X^n)^k \stackrel{\alpha^k}{\to} X^k,$$

 $\alpha \in \mathcal{E}(n,1)$, where $\tau_{n,k}$ is the homeomorphism

$$((x_{11},...,x_{1k}),...,(x_{n1},...,x_{nk})) \rightarrow ((x_{11},...,x_{n1}),...,(x_{1k},...,x_{nk})).$$

Received by the editors May 17, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55P47.

Key words and phrases. Homotopy-everything H-spaces, infinite loop space, homotopy homomorphism.

298 R. M. VOGT

To prove the theorem we need an action of $HW(\mathcal{E} \otimes \mathcal{L}_1)$ extending χ and the actions on X^k and X. The idea is to apply the Lifting Theorem [2, Theorem 3.7] with $\mathcal{V} \subset HW(\mathcal{E} \otimes \mathcal{L}_1)$ being the subcategory generated under composition and \oplus by $W(\mathcal{E} \otimes \{0\})$, $W(\mathcal{E} \otimes \{1\})$ and the single morphism $(\mathrm{id}_1 \otimes (0 \to 1))$. To minimize notation we denote the objects (n,0) and (n,1) in $\mathcal{E} \times \mathcal{L}_1$ by n respectively n'. For \mathcal{C} we take the PROP $\mathcal{S} \otimes \mathcal{L}_1$, where \mathcal{S} is the PROP of abelian monoids, i.e. $\mathcal{S}(n,1)$ consists of a single point for all n. We have to construct an appropriate PROP \mathcal{D} acting on the pair (X^k, X) extending the \mathcal{E} -action on X^k and on X and the map χ , yielding a commutative diagram:

$$HW(\mathcal{E} \otimes \mathcal{L}_1) \stackrel{\mathcal{V}}{\frown} \stackrel{\mathcal{D}}{\frown} \\ \downarrow^{\epsilon} \qquad \downarrow^{G} \\ \mathcal{E} \otimes \mathcal{L}_1 \stackrel{\mathcal{F}}{\longrightarrow} S \otimes \mathcal{L}_1$$

Here F and G are the uniquely determined PROP-functors. If each $\mathcal{D}(n, 1)$, $\mathcal{D}(n, 1')$ and $\mathcal{D}(n', 1')$ is contractible (respectively Σ_n -equivariantly contractible), and \mathcal{E} is Σ -free (respectively arbitrary) the theorem is proved.

Construction of \mathcal{D} . It suffices to specify

(A)
$$\mathcal{D}(n,1) := \mathcal{E}(n,1), \quad \mathcal{D}(n,1') := \mathcal{E}(nk,1), \quad \mathcal{D}(n',1') := \mathcal{E}(n,1),$$

the composite of a morphism α in these spaces with a permutation $\pi \in \Sigma_n$, and of α with an n-fold sum $\beta_1 \oplus \ldots \oplus \beta_n$ with β_i in the appropriate spaces (A). As long as we stick in the full subcategories of objects n respectively n' these compositions are given by the composition in \mathcal{E} . If $\alpha \in \mathcal{D}(n', 1')$ and $\beta_i \in \mathcal{D}(n_i, 1')$ the composition is again the one in \mathcal{E} . It remains to define $\alpha \circ \pi$ and $\alpha \circ (\beta_1 \otimes \cdots \otimes \beta_n)$ for $\alpha \in \mathcal{D}(n, 1') = \mathcal{E}(nk, 1)$, $\beta_i \in \mathcal{D}(n_i, 1) = \mathcal{E}(n_i, 1)$:

$$\alpha \circ \pi = \alpha \circ (\pi \oplus \cdots \oplus \pi),$$

$$\alpha \circ (\beta_1 \oplus \cdots \oplus \beta_n) = \alpha \circ [(\beta_1 \oplus \cdots \oplus \beta_n) \oplus \cdots \oplus (\beta_1 \oplus \cdots \oplus \beta_n)],$$

where on the right side we have composition in \mathcal{E} with k summands π respectively $(\beta_1 \oplus \cdots \oplus \beta_n)$.

The operation of \mathcal{D} on the pair (X^k, X) is given as follows.

 $\alpha \in \mathcal{D}(n,1) = \mathcal{E}(n,1)$ operates as $\alpha \circ \tau_{n,k} : (X^k)^n \to X^k$,

$$\alpha \in \mathcal{D}(n,1') = \mathcal{E}(nk,1)$$
 operates as $\alpha \circ \tau_{n,k} : (X^k)^n \to X$,

 $\alpha \in \mathcal{D}(n',1') = \mathcal{E}(n,1)$ operates as $\alpha \colon X^n \to X$.

Obviously, \mathcal{D} satisfies all the requirements listed above, which proves the theorem.

REFERENCES

- J. M. Boardman and R. M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122.
- Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., vol. 347, Springer-Verlag, Berlin and New York, 1973.
- 3. T. Lada, An operad action on infinite loop space multiplication, Canad. J. Math. 29 (1977), 1208-1216.
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer-Verlag, Berlin and New York, 1972.

FACHBEREICH MATHEMATIK, UNIVERSITÄT OSNABRÜCK, 45 OSNABRÜCK, WEST GERMANY