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THE LATTICE OF LEFT IDEALS IN
A CENTRALIZER NEAR-RING IS DISTRIBUTIVE

KIRBY C. SMITH

ABSTRACT. A decomposition theorem for a left ideal in a finite centralizer
near-ring is established. This result is used to show that the lattice of left
ideals in a finite centralizer near-ring is distributive.

1. Introduction. In the development of a density theorem for 2-primitive near-
rings with identity, as presented by Betsch in [1], a key lemma for the proof of the
density theorem is Lemma 2.9 of [1] due to Wielandt (6].

LEMMA (WIELANDT). Let N be an arbitrary near-ring and let B, C, D be
N -submodules of some N-module. Then the N-module

_ (B+D)n(C+D)
- (BNnO)+D

s commutative, and for alln € N the mapping ' — T defined by v — n(7) is an
endomorphism of (T, ).

An immediate consequence of Wielandt’s lemma is the following found in [1].

r

COROLLARY. Let N be a near-ring with identity such that no nonzero homomor-
phic image of N is a ring, then the lattice of left ideals of N 1s distributive, that is
(B4 D)N(C + D)= (BNC)+ D for any left ideals B, C, D of N.

Thus in near-rings N that satisfy the hypothesis of the corollary, the lack of
elementwise left distributivity in IV is compensated for by a gain in the distributivity
of left ideals.

It is natural to ask which near-rings have the property that their lattice of left
ideals is distributive. It is the goal of this paper to show that if N is a finite
centralizer near-ring then the lattice of left ideals of N is distributive. Since such
a near-ring can have a nonzero ring as a homomorphic image (see [4]), this result
does not follow from the corollary to Wielandt’s lemma.

We begin by recalling the definition of a centralizer near-ring. Let (G, +) be
a group with identity 0 and A a group of automorphisms of G. The centralizer
near-ring determined by G and A is the set

C(A;G)={f: G- G|fa=affor alla € A, f(0) = 0},

forming a near-ring under function addition and function composition. Centralizer
near-rings arise naturally in the classification of 2-primitive near-rings [5, Chapter
4] and play a role in near-ring theory analogous to that of matrix rings in ring
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theory. In this paper we deal only with finite centralizer near-rings, that is (G, +)
is a finite group.

We now establish some concepts and notations used throughout this paper in
relation to the centralizer near-ring N = C(A;G). For v € G we denote by
stab(v) the stabilizer subgroup {a € Alav = v} of A and by f(v) the A-orbit
of G containing v. Two orbits 8(w), 8(v) are synonymous, written O(w) ~ 6(v), if
there exist w’ € 6(w), v' € 6(v) with stab(w’) = stab(v’). The set of all orbits of
G is partially ordered as follows: §(w) < 6(v) if and only if there exist w’ € 6(w),
v/ € 6(v) such that stab(w’) D stab(v’) (proper containment). We will use the
notation 6(w) < 6(v) to mean O(w) < 6(v) or (w) ~ 6(v). Similarly the elements
of G are partially ordered as follows: w < v if and only if stab(w) D stab(v) (proper
containment), and w ~ v if and only if stab(w) = stab(v). Finally w < v means
stab(w) O stab(v). It is easy to see that w < v if and only if there exists an
element f € C(A;G) such that f(v) = w, a result due to G. Betsch (at the 1976
Oberwolfach Conference on near-rings).

Throughout this article 6(vy), 8(vs), ..., 0(v,), {0} are assumed to be the A-orbits
of the finite group G. The orbit representatives v, ..., v, are assumed to have the
property that if 6(v;) < 6(v;) then v; < v;. A function f € C(A; G) is completely
determined once its action on each v; is known. In analogy with matrix units in
complete matrix rings we define the following special functions on G which belong
to C(A4;G). Fort = 1,...,n let e;: G — G be the identity on 6(v;) and zero off
0(v;). Each e; is idempotent and 1 = e; + --- + e,. For orbits 6(v;), 6(v;) with
8(vi) < 6(v;) define e;;: G — G by e;;(vj) = v; and e;; is zero off 6(v;).

2. Decomposition of left ideals. In this section we derive a decomposition theorem
for left ideals L in C(A; G) which will be used in the final section to prove that the
left ideals of C(A; G) form a distributive lattice.

LEMMA 1. Suppose L s a left ideal of C(A; G) and let §(vi), 6(v;) be orbits of
G under A with v, < v;. If there ezists an f € L such that f(v;) € 6(vk) and
f(v;) 4 v; € 6(vk), thene; € L.

PROOF. Since exf € L we may assume the range of f is §(vg) U {0}. Let g =
ex(f +e;) —exe; = ex(f +e¢;), an element in L. We have g(v;) = ex(f(v;)+v;) =
f(v;) 4 v;, and g(z) = f(z) for = & B(v;). So —f +g € L and (—f + g)(v;) =
—f(0;) + 1) + 5 = v, (—f + 9)(z) = 0, z € 6(v,). Hence —f +g=r¢, € L.

LEMMA 2. Suppose L is a left ideal of C(A; G) and let 0(v;) be an orbit of G
under A. If f € L s such that f(v;) ~ v; thene; € L.

PROOF. We may assume f(v;) = v;. For if f(v;) € 6(v;) then 6(v,) ~ 6(v;) and
eij € C(A; G). Also e;;f € L with e;;f(vi) € 6(v;). Moreover some power of e;; f is
the identity on 6(v;).

As in the proof of Lemma 1 we may also assume that the range of f is 6(v;)U{0}.
Hence if f(vi) 7 0 for some k 5 1, then f(vx) = Bkvi, Bx € A.

Finally we may assume f is nonzero off §(v;), for otherwise f = e; and we are
done. Among all such f € L, select f so that the number of such orbits 8(vi) for
which f(vg) 7 0 is minimal. Suppose f(vk) = Brvs, k 7 1.

Case 1. Assume there exists a w € G such that w # 0, w < v;, w € 6(v;) and
v; + w & 6(v;). Let g be the element in C(A; G) with g(v;) = 0, g(vk) = Brw and
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g(z) = 0if z & 6(v;) U O(vi). Then e;,(f + g) —e;g € L and e;(f 4 g) — e;9 = e,
due to the minimality of f. Hence e; € L as desired.

Case 2. Assume v; + w € 6(v;) for every w such that w < v;, w ¢ 6(v;). In
this case we claim 6(v;) is synonymous only to itself. For suppose 8(v;) ~ 6(v), yet
0(v;) 7% 0(vi) where v; ~ vi. Let o1v; = v;, 025, ..., 01v; be the distinct elements
of 6(v;) having the same stabilizer as v;, that is a;v; ~ vy, J = 1,2,...,t. Then
since 0(v;) ~ 0(vk), @ vk = Uk, Q2Uk, ...,V are the distinct elements of 6(vi)
which are synonymous to v;. By assumption v; 4 ojvx € 0(v;) for j = 1,2,...,¢.
Moreover these elements are all distinct and v; + a;ve ~ v; for all 5. But none is
equal to v;, so 6(v;) contains ¢t + 1 elements v;, v; + Vg, . . ., V; + @4V Synonymous
with v;. This contradicts 6(v;) having ¢t such elements. Hence 6(v;) is a unique orbit
type as claimed.

We now have that if f(vg) = Bxv; for some k 5 ¢ then v; < vi. If Bev; + vk &
6(v;) then e;(f + ex) — eiex = e; due to the minimality of f. Soe; € L. If
Bkvi + vk € 0(v;), then Lemma 1 applies and e, € L. This means f — fex =¢; €
L, due to the minimality of f.

THEOREM 1. Let L be a left ideal of C(A;G). Then for each orbit 8(v;) of G
under A, Le; C L.

PROOF. Select f € L. If f(v;) = 0 then fe, = 0 € L, so we may assume
f(v;) = w € B(vg). We have exf € L and e, fe; = fe;. Thus we may assume the
range of f is contained in 8(v,)U{0}. If f is zero off 8(v;) then fe; = f € L and we
are done. As in the proof of Lemma 2 we may reselect f so that it agrees with the
original function on 6(v;) and is nonzero on a minimal number of orbits. Selecting
T & 0(v;) such that f(z) % 0 means f(z) = awvy for some o € A. Since w € 6(vy),
z may be selected so that z > w.

Case 1. Assume z > w. We have f(z) = avg. If f(z) + z = avk + = & 0(vk),
then ex(f+e;)—exe; = fe; due to the minimality of f. So in this situation fe; € L.
Assume now that f(z)+z € 0(vi). Let g = ex(f+e,)—exe;. Then g(z) = f(z)+z
and g = f off (z). We have g € L and (—f + ¢)(z) = —f(z) + f(z)+z = z and
—g + f is zero off §(z). Hence —f + g =1¢, € L. So f — fe, = fe; € L, again
using the minimality of f.

Case 2. Assume z ~ w. Then f(z) = avy for some oo € A. Hence e, € L by
Lemma 2 and f — fe;, = fe; € L, again using the minimality of f.

COROLLARY. Let L be a left ideal of C(A;G). ThenL=Le; § --- P Le,.

PROOF. From the theorem, Le; + --- + Le, C L. Also if f € L then f =
fer+-+-+ fen. Thus L = Le; & --- P Le, since

Le;N(Lex + -+ Lej—1 + Leips + -+ + Len) = {0}

3. The lattice of left ideals of C(A; G) is distributive. Let L and L’ be left ideals
of C(A; G). From the corollary to Theorem 1, L = > Le; and L' = Y L'e;. We
have

(1) L =L’ iff Le; = L'e; for every ¢,

(2) L+ L =3 (L+ L)e,

By LNL =Y (LNLe.
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Now let B = ) Be;,, C = Y Ce; and D = }_ De; be left ideals of C(A;G).
Using properties (2) and (3) above we have

(B+D)N(C+ D)= (Be; + De;) N (Be; + De;)
= (B4+D)n(C+ D),
(BNC)+ D = (Be; N Ce;) + De;
=Y ((BNC)+ Dje..
Using property (1) we have established the following lemma.

LEMMA 3. Let B, C and D be left ideals of C(A; G). Then(B+D)N(C + D) =
(BN C)+ D if and only if (Be; + De;) N (Ce; + De;) = (Be; N Ce;) + De; for
1=1,...,n

We note that Be;, Ce;, De; are left ideals of N = C(A;G) contained in the
left ideal Ne;. Lemma 3 implies that the lattice of left ideals of N = C(A4;G) is
distributive provided the lattice of left ideals of N contained in Ne; is distributive
fort=1,...,n.

For each 7 let T(v;) = {w € Glw < v;}, a subgroup of G. For y € G let
P(y;vi) = {w € 0(y)|w < v;}. The following result whose proof can be found in
3] has relevance to our problem.

THEOREM 2. Let N = C(4; G) withv; € G*, G* = G — {0}. Then there exists
a one-to-one correspondence between left ideals L of N contained in Ne; and subsets
H of G such that
(i) H us a normal subgroup of T(v;),
(if) H is N-invariant,
(iii) P(y; v;) is a union of cosets of H for ally € T(v;) — H
(iv) f y € T(vi) — H, a € A such that ay —y € H then az — z € H for all
z € T(v;) with stab(z) D stab(y).

The correspondence mentioned in Theorem 2 is given by L — Hy where H; =
{w|w = f(v;) for some f € L} = Lwv,.

LEMMA 4. Suppose L, and L, are left ideals of N = C(A; G) contained in Ne;.
Then either Ly C Lo or Ly C L.

PROOF. Suppose Ly, L are such that L; Z L, and Ly Z L;. We have L; —
H = Lyv; and Ly - K = Lyv;. Since Ly Z Ly then H Z K and since L Z L
then K Z H. AlsoL1+L2 - H+K. SelectheH k € K such that h+kEH
and h+k ¢ K. Since h+k € H + K there exists an f € L; + L2 such that
f(v;) = h+ k. We have f(v;) € T(v;)— K so by Theorem 2, part (iii), P(f(vs); vi)
is a union of cosets of K. This means P(f(v;);v;) D f(v;) 4+ K = h+k+ K and
s0 b € P(f(v;);s).

Also f(v;) € T(v;) — H and by Theorem 2, part (iii), P(f(v:);v:) is a union of
cosets of H. But h € P(f(v;);v;), so P(f(vs);vi) D h+ H = H. This means
0 € P(f(v;); vs), a contradiction to the definition of P(f(v;);v;).

THEOREM 3. The lattice of left ideals of N = C(A; G) is distributive.

PROOF. From Lemma 3 it suffices to prove that the lattice of left ideals of N
contained in Ne; is distributive for each 7. From Lemma 4 the left ideals of N
contained in Ne; form a chain and hence the lattice is distributive (see 2, p. 441}).
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