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THE LATTICE OF LEFT DDEALS IN

A CENTRALIZER NEAR-RING IS DISTRIBUTIVE

KJRBY C. SMITH

ABSTRACT. A decomposition theorem for a left ideal in a finite centralizer

near-ring is established. This result is used to show that the lattice of left

ideals in a finite centralizer near-ring is distributive.

1. Introduction. In the development of a density theorem for 2-primitive near-

rings with identity, as presented by Betsch in [1], a key lemma for the proof of the

density theorem is Lemma 2.9 of [1] due to Wielandt [6].

LEMMA (WIELANDT). Let N be an arbitrary near-ring and let B, C, D be

N-submodules of some N-module. Then the N-module

(B + D)n(C + D)

(BnC) + D

is commutative, and for all n E N the mapping T —► F defined by 7 —» 71(7) is an

endomorphism of(T, +).

An immediate consequence of Wielandt's lemma is the following found in [1].

COROLLARY. Let N be a near-ring with identity such that no nonzero homomor-

phic image of N is a ring, then the lattice of left ideals of N is distributive, that is

(B + D)D(C + D) = (BPiC) + D for any left ideals B,C,DofN.

Thus in near-rings TV that satisfy the hypothesis of the corollary, the lack of

elementwise left distributivity in N is compensated for by a gain in the distributivity

of left ideals.

It is natural to ask which near-rings have the property that their lattice of left

ideals is distributive. It is the goal of this paper to show that if N is a finite

centralizer near-ring then the lattice of left ideals of N is distributive. Since such

a near-ring can have a nonzero ring as a homomorphic image (see [4]), this result

does not follow from the corollary to Wielandt's lemma.

We begin by recalling the definition of a centralizer near-ring. Let (G, +) be

a group with identity 0 and A a group of automorphisms of G. The centralizer

near-ring determined by G and A is the set

C(A; G) = {/ : G — G\fa = af for all a G A, /(0) = 0},

forming a near-ring under function addition and function composition. Centralizer

near-rings arise naturally in the classification of 2-primitive near-rings [5, Chapter

4] and play a role in near-ring theory analogous to that of matrix rings in ring
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theory. In this paper we deal only with finite centralizer near-rings, that is (G, -f-)

is a finite group.

We now establish some concepts and notations used throughout this paper in

relation to the centralizer near-ring N = C(A; G). For v G G we denote by

stab(t>) the stabilizer subgroup {a G A\av = v} of A and by 9(v) the A-orbit

of G containing v. Two orbits 6(w), 9(v) are synonymous, written 6(w) ~ 9(v), if

there exist w' G 9(w), v' G 9(v) with stab(?V) = stab(v'). The set of all orbits of

G is partially ordered as follows: 9(w) < 9(v) if and only if there exist w' G 9(w),

v' G 9(v) such that stab(u/) D stab(t>') (proper containment). We will use the

notation f?(w) ^ 0(v) to mean 0(tu) < 9(v) or 0(w) ~ 9(v). Similarly the elements

of G are partially ordered as follows: w < v if and only if stab(iü) D stab(u) (proper

containment), and w ~ 7j if and only if stab(u;) = stab(u). Finally w < v means

stab(iu) D stab(u). It is easy to see that w < v if and only if there exists an

element / G C(A; G) such that f(v) = w, a result due to G. Betsch (at the 1976

Oberwolfach Conference on near-rings).

Throughout this article 9(vi), 9(v2),..., 9(vn), {0} are assumed to be the A-orbits

of the finite group G. The orbit representatives v\,... ,vn are assumed to have the

property that if 9(vi) < 9(vj) then Vi < Vj. A function / G C(A; G) is completely

determined once its action on each Vi is known. In analogy with matrix units in

complete matrix rings we define the following special functions on G which belong

to C(A; G). For i = 1,..., n let e¿ : G —► G be the identity on 9(vi) and zero off

9(vi). Each ei is idempotent and 1 = ex + • • • -f- e»». For orbits 9(vi), 9(vj) with

9(vi) < 9(vj) define dj : G —► G by ei3(vj) = Vi and ey is zero off 0(v,-).

2. Decomposition of left ideals. In this section we derive a decomposition theorem

for left ideals L in C(A; G) which will be used in the final section to prove that the

left ideals of C(A; G) form a distributive lattice.

LEMMA 1. Suppose L is a left ideal of C(A;G) and let 9(vk), 9(vj) be orbits of

G under A with vk < Vj. If there exists an f G L such that f(vj) G 9(vk) and

f(vj) + Vj G 9(vk), then e} G L.

PROOF. Since ekf G L we may assume the range of / is 9(vk) U {0}. Let g =

ek(f + ej) — ekej = ek(f + ej), an element in L. We have g(vj) = ek(f(vj) + Vj) =

f(vj) + Vj, and g(x) = f(x) for x g 9(vj). So — / + g £ L and (—/ + g)(vj) =

-f{vj) + f{vj) + Vj = Vj, (-/ + g)(x) = 0,x£ 9(v0). Hence -/ + g = e0 £ L.

LEMMA 2. Suppose L is a left ideal of C(A; G) and let 9(vi) be an orbit of G
under A. If f £ L is such that f(vi) ~ i>¿ then ei £ L.

PROOF. We may assume f(vi) = Vi. For if f(vi) £ 9(vj) then 9(vj) — 9(vi) and

eij £ C(A; G). Also e¿¿/ G L with eijf(vî) £ 9(vî). Moreover some power of ey/ is

the identity on 9(ví).

As in the proof of Lemma 1 we may also assume that the range of / is 9(vi) U {0}.

Hence if f(vk) 7^ 0 for some fc 7^ i, then f(vk) = ßkVi, ßk £ A.

Finally we may assume / is nonzero off 9(vi), for otherwise / = e¿ and we are

done. Among all such f £ L, select / so that the number of such orbits 9(vk) for

which f(vk) 7^ 0 is minimal. Suppose f(vk) = ßkVi, k^i.

Case 1. Assume there exists a w £ G such that w 7^ 0, w < v», w fc 9(vi) and

Vi-\-w£ 9(ví). Let g be the element in C(A; G) with g(vi) = 0, g(vk) = ßkw and



LATTICE OF LEFT IDEALS 315

g(x) = 0 if x G 9(ví) U 9(vk). Then e,-(/ + j)-e¡«eL and ei(f + g) — eig = a
due to the minimality of /. Hence e¿ G L as desired.

Gase 2. Assume Vi -\- w £ 9(vi) for every w such that u> < Vi, w G #(^i)- In

this case we claim 9(vi) is synonymous only to itself. For suppose 9(vi) ~ 0(i>fc), yet

9(vi) 7¿ ö(vfc) where v¿ ~ Ufc. Let aiu¿ = Vi, a2Vi,..., atu¿ be the distinct elements

of 9(vi) having the same stabilizer as Vi, that is acjVi — v<, j = 1,2,..., i. Then

since 0(fi) ~ 9(vk), aivk = «fc, c^vio- ■ • ,o¡tVk are the distinct elements of 9(vk)

which are synonymous to v%. By assumption v¿ -4- a^üfc G 0(v¿) for j = 1,2,..., t.

Moreover these elements are all distinct and Vi -4- a0vk ~ u¿ for all j. But none is

equal to u¿, so 0(ui) contains t-\- 1 elements Vi, Vi -4- v¿,..., Vi + atVfc synonymous

with v¿. This contradicts 0(t>¿) having t such elements. Hence 0(i>i) is a unique orbit

type as claimed.

We now have that if f(vk) = /?/cV¿ for some k^i then v¿ < vk. If /3fcU¿ -f- vk £

9(ví) then e¿(/ + ek) — e¿e/c = e¿ due to the minimality of /. So ei £ L. If

ßkVi -\-vk£ 9(vi), then Lemma 1 applies and ek £ L. This means / — fek = ei £

L, due to the minimality of /.

THEOREM 1. Let L be a left ideal of C(A;G). Then for each orbit 9(vt) of G
under A, Lei Q L.

PROOF. Select f £ L. If f(v%) = 0 then /e, = 0 G L, so we may assume

f(vi) = w £ 9(vk). We have ekf £ L and ekfei = /e¿. Thus we may assume the

range of / is contained in 9(vk)U {0}. If / is zero off 9(v%) then /e¡ = / £ L and we

are done. As in the proof of Lemma 2 we may reselect / so that it agrees with the

original function on 9(vi) and is nonzero on a minimal number of orbits. Selecting

x G 9(vi) such that f(x) 7^ 0 means f(x) = avk for some a £ A. Since w £ 9(vk),

x may be selected so that x > w.

Case 1. Assume x > w. We have f(x) = avk. If f(x) -\- x = avk -4- x £ 9(vk),

then ^(/-l-ex)—ekex = fei due to the minimality of /. So in this situation /e¿ £ L.

Assume now that /(x)-|-x £ 9(vk). Let g = ek(f-\-ex)—ekex. Then g(x) = /(x)-f-x

and g = f off 9(x). We have g £ L and (—/ + g)(x) = —f(x) -f- /(x) + x = x and

—g + / is zero off 6(x). Hence —/ + g = ex £ L. So / — fex = fei £ L, again

using the minimality of /.

Case 2. Assume x ~ to. Then /(x) = qv^ for some a G A. Hence ex £ L by

Lemma 2 and / — fex = fei £ L, again using the minimality of /.

COROLLARY.   Let L be a left ideal of C(A; G). Then L = Lei © • • ■ 0 Len.

PROOF. From the theorem, Lex + • ■ • + Len C L. Also if / G L then / =

M H-h /en- Thus L = Lex © • • • © Len since

Le¿ n (Let -|-1- Lei-X + Lel+1 H-h Len) = {0}.

3. The lattice of left ideals of C(A; G) is distributive. Let L and L' be left ideals

of C(A;G). From the corollary to Theorem 1, L = J^Eei and L' = ^L'e¿. We

have

(1) L = L' iff Lei = L'ei for every ¿,

(2)L-r-L' = i;(L + L0ei,
(3)LnL' = E(LflL')er
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Now let B = £Be¿, G = £Ge¿ and D = J2Dei be left ideals of C(A;G).
Using properties (2) and (3) above we have

(B + D) n (G + D) = J2(Bei + £>e<) n (Be, + £»e,)

= £((B + B)n(G + D))et,

(B n G) + £> = Yj<Bei n Ce') + Dei

= ^pnC) + D)et.

Using property (1) we have established the following lemma.

LEMMA 3. Let B,C andD be left ideals of C'(A; G). Then(B + D)n{C -\-D) =
(B nC) + D if and only if (Be, + Da) n (Ge¿ + Da) = (Be¿ D Ge¿) + Da for
i = 1, ... ,71.

We note that Be¿, Ge¿, £>e¿ are left ideals of N = C(A; G) contained in the

left ideal Na. Lemma 3 implies that the lattice of left ideals of N = C(A; G) is

distributive provided the lattice of left ideals of N contained in Nei is distributive

for i = 1,... ,n.

For each i let T(ví) = {w £ G\w < u¿}, a subgroup of G. For y G G let

P(y,vi) = {w G 9(y)\w < Vi). The following result whose proof can be found in

[3] has relevance to our problem.

THEOREM 2. Let N = C(A; G) with Vi £ G*, G* = G — {0}. Then there exists

a one-to-one correspondence between left ideals L ofN contained in Nei o,nd subsets

H of G such that
(i) H is a normal subgroup of T(ví),

(ii) H is N-invariant,

(iii) P(y; v,) is a union of cosets of H for all y £ T(ví) — H,

(iv) if y £ T(ví) — H, a £ A such that ay — y £ H then az — z £ H for all

z £ T(ví) with stab(,z) D stab(y).

The correspondence mentioned in Theorem 2 is given by L —► Hi, where Hi, =

{w\w = f(vi) for some / G L} = Lu¿.

LEMMA 4. Suppose L\ and L2 are left ideals of N = C(A; G) contained in Na.
Then either L\ C L2 or L2 C Li.

PROOF. Suppose Lx, L2 are such that L\ ÇL L2 and L2 %_Lx- We have Lx —*

H = LxVi and L2 ->■ K = L2Vi. Since Lx % L2 then H ÇLK and since L2 g. L\
then K £_ H. Also Lx +L2 -+H + K. Select h£H,k£K such that h + k£H
and h + fc £ K. Since h + fc G H -4- K there exists an / G Lx + L2 such that

f(vi) = h + fc. We have f(vi) £ T(v{) — K so by Theorem 2, part (iii), P(f(vi); Vi)
is a union of cosets of K". This means P(f(vi);vi) D f(vi) -\-K = h-\-k-\-K and

so h £ P(f(vi);Vi).
Also f(vi) £ T(ví) — H and by Theorem 2, part (iii), P(f(vi); Vi) is a union of

cosets of H. But fe £ P(f(vi); Vi), so P(/(u¿); Vi) D h-\-H = H. This means

0 G P(f(vi); Vi), a contradiction to the definition of P(f(vi); vî).

Theorem 3.   The lattice of left ideals of N = C(A; G) is distributive.

PROOF. From Lemma 3 it suffices to prove that the lattice of left ideals of N

contained in iVe¿ is distributive for each i. From Lemma 4 the left ideals of N

contained in A/e¿ form a chain and hence the lattice is distributive (see [2, p. 441]).
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