
proceedings of the
american mathematical society
Volume 85, Number 3, July 1982

MAPS OF THE INTERVAL WITH CLOSED PERIODIC SET

ZBIGNTEW NITECKI1

ABSTRACT. We show that for any continuous map of the interval whose

periodic points form a closed set, every nonwandering point is periodic with

least period a power of two.

Block showed [Bl] that if the set Per(/) of periodic points for a continuous

map of the interval /: 7 —> I is finite and consists only of fixed points, then the

nonwandering set fl(f) equals Per(/). Coven and Hedlund [CH] extended this,

obtaining the same conclusion from the weaker hypothesis that some power g = fn

of / simultaneously fixes all the periodic points. Other results related to these are

established in [B2, CH, L]. In this paper, we extend the results stated above.

Theorem. If f: I —► I is continuous and Per(/) is a closed set, then U(f) =

Per(/).

I would like to thank Ethan Coven and Louis Block for useful conversations

about this problem, including a gap in my original version. I have heard recently

of an independent proof of the theorem above by Jin-Cheng Xiong [X].

We note that Per(/) closed does not imply that the set of least periods is finite, so

that Coven-Hedlund's result need not apply. To construct an example, we simply

string together maps /„: [¿,í¿t] -* [n>H^r] so that /„(£) = £ and Per(/n)

contains points of least period 2", but none higher. We will see from the proof of

our theorem that this example is in essence the only situation in which Per(/) is

closed and [CH] does not apply.

Our point of departure is Block's homoclinic point theorem [B3]. Given a periodic

point p for / and a power of /, g = fn, define the full, left, and right unstable sets

of the 0-orbit of p by

V^O,ff)= fl   U 9k(p-e,p + e),
c>0 fc>0

(1) W»(p,g,L)= f|  (J gk(p-e,p],
e>0fc>0

Wu(p,g,R)= f|   (J gk[p,p + e).
e>0 k>0

It is clear that when g(p) = p, each unstable set is an interval containing p (and

perhaps nothing else). One can see that

W>, ») = WO" 9>L) U W(p, 9, R).
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When p £ Per(/) has an /-orbit consisting of n points, we number these so that

Pi < P2 < • • • < Pn- It is possible to choose sides 7?¿ and L¿ at each point pi so

that
71

Wu(p,f,R)={jW^(pi,r,Ri),

(2) t1

wu(p,f,L)= u^íPi.r.-Li)
i=l

and, whenever p., = f(pi),

u f\wuiPi,r,u)\=wu(j>j,r,Lj).

For further details on this, see [CN, N], noting that the unstable sets U defined

there are the closure of the corresponding sets Wu defined above.

Following Block [B3], a (strong) homoclinic point for p £ Per(/) is a point x ^

p, x £ Wu(p, g) for which gk(x) = p, where g is a power of / fixing p. A weak

homoclinic point is defined as above, but with g replaced by /. The following is

an elaboration of Block's homoclinic point theorem [B3, Theorem A], which asserts

the equivalence of the first two conditions.

PROPOSITION.   The following are equivalent for f: I —* I continuous.

(i) Each p £ Per(/) has period a power of 2.

(ii) Nop£ Per(/) possesses a strong homoclinic point.

(iii) Nop £ Per(/) possesses a weak homoclinic point.

The equivalence of (i) and (ii) is Block's theorem, and (ii)=^(iii) is obvious.  It

is possible for a map to possess weak homoclinic points which are not themselves

strong homoclinic; one example is the map described in §1 of [CN], where f2(xo) =

9 = P(q), P = f(q) and x0 £ Wu(p,f2,L) C VT(q,f,R), but x0 £ W-(q, f2) C

Ml-
However, the existence of weak homoclinic points implies the existence of strong

ones, as shown in the following proposition, from which (iii)=»(ii) and hence the

proposition follows.

LEMMA 1. If the f-orbit ofp £ Per(/) has a weak homoclinic point, then some

point on this orbit has a strong homoclinic point.

PROOF. We first make a few observations concerning the unstable sets of periodic

points with no strong homoclinic points. These arguments adapt proofs from [B2],

which were formulated there with different hypotheses.

Suppose g = /", g(p) = p, and p possesses no strong homoclinic points.

Claim 1. W"(p, g) n {x\x > p} C Wu(p, g, R).
To see this, suppose x > p belongs to Wu(p, g, L)\Wu(p, g, R). Since x j?

Wu(p,g,R), we can find a right neighborhood of p, V = [p, p -f- e], such that

fn(v) < x for all v £ V, n > 0. By continuity of /, there exists q < p such

that f(r) < p -f- e for all r £ [q, p]. Now, since x £ Wu(p, g, L), there exist points

z < p, arbitrarily near p, such that fn(z) = x for some n = n(z) > 0. Note

that for any such z and n, fk(z) £ V for fc = 0,1,... ,n. Thus, we can find

k < n such that fk~ 1(z) < p, fk(z) < q, and fk+1(z) > p + e.   Denote by
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J the interval with endpoints fk~ 1(z) and fk(z). On one hand, by definition p £

ifk(z)> fk+1(z)) C F(J), so some s £ J satisfies f(s) = p. On the other hand,

since z can be chosen arbitrarily near p from below, q £ Wu(p, q, L). But then if

z > q, J C Wu(p, g, L)\{p} and so s is a strong homoclinic point for g.

Claim 2. If p < q are fixed points of g such that q £ Wu(p,g,R) and p £
Wu(q, g, L) then p and q each possess a strong homoclinic point.

To see this, note that for each e > 0 there exists n such that

qegn(p,p+e),        p£gn(q~e,q).

But then (q — e, q) C gn(p, p + e), and (p, p + e) C gn(q — e, q) and hence

qeg2n(q-e,q),        p £ g2n(p,p + e).

Since e > 0 is arbitrary, this produces strong homoclinic points.

Claim 3. Suppose fn(p) = p and p^£q = fk(p). If the f-orbit ofp possesses no

strong homoclinic orbits, then q £ Wu(p, fn).

Again, we number the points of the /-orbit of p so that pi < p2 < • • • <

pn. It is clear from (3) above that if Wu(p, /") includes p¿ t¿ p, then every

Wu(pj,fn) includes some pk ^ pj. For j = 1, this implies (using Claim 1) that

P2 £ W{pi, fn,R). Then, by Claim 2, Pl g Wu(p2, /"). Hence, p3 £ V^(p2, /n,R)

and inductively pi+1 G Wu(pi, fn, R) for i' = 1,..., n — 1. In particular,

Pner(p„_i,/n,fi).

But by the left-handed analogue of Claim 1, since some p¿ to the left of p„ must

belong to W™(pn,/n), we have p„_i £ Wu(pn,fn,L). This together with the

preceding inclusion gives a strong homoclinic point by Claim 2.

PROOF of Proposition. Given Claims 1-3, the lemma is now easy to prove.

Suppose i is a weak homoclinic point of the /-orbit {pi\i = 1,..., n}. Thus, for

some i, pi t¿ i £ Wu(pi, /"), and fk(x) = Pi. This second condition can be

replaced by fkn(x) = Pj. If i = j, x is a strong homoclinic point of p¿. If î ^ j,

then by (3),
pj£fknwu(Pi,r) = wu(P%,n

since fkn(pi) = Pi. But then by Claim 3, with q = pj, p = pi, we see that the

orbit of pi possesses strong homoclinic points.    D

Recall that if (i) or (ii) fails there exists an invariant subset for / with a non-

trivial (one-sided) subshift of finite type as a factor [B3, BGMY, N]. Since the

semiconjugacy is finite-to-one and the periodic points are dense in the phase space

of the subshift but not equal to it, we have

COROLLARY. If f: I -+ 7 is continuous withPer(/) closed, nop £ Per(/) has a

homoclinic point (weak or strong).

Up to the last step, our argument for the theorem will be based on an analysis

of the nonwandering set, assuming no homoclinic points. Recall the following fact:

Lemma 2 [CN]. If f: I —* I is continuous and x £ Q(f), there exist points

xn —► x such that fn(xn) = x for a subsequence.

A consequence is

LEMMA 3. If f: I —► 7 is continuous and has no homoclinic points, then any

x £ fî(/)\Per(/) has an infinite orbit.
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PROOF. If x has a finite orbit then fk(x) = p £ Per(/) for some k > 0. Since

fk(xn) —* fk(x) = p in Lemma 2, fn~k(fk(xn)) = x for a subsequence implies

x £ Wu(p,f). But x £ Per(/) implies i^p, hence x is a homoclinic point for

p.    D
Maps with no homoclinic points can also be characterized by separation of orbits.

We recall the formulation of this idea from [N], which summarizes versions found

earlier in [B4, M, LMPY]. A set P C 7 is separated to order one under / if there

exists a point z such that for every p £ P, f(p) > z iff p < z. For P an orbit

segment {x, f(x),..., fk(x)}, this means all even iterates (up to k) are on one side

of z while all odd iterates are on the other. We can always take z in this definition

to be fixed under /.

If P is separated to order one under /, we denote the two sets into which z

divides P by Pn,Pi. By induction, define P to be separated to order n under / if

P is separated to order (n — 1) under / and each half P¿ (i = 0,1) is separated to

order one under f2.

We note the following without proof.

LEMMA 4.   Suppose f: I —► 7 is continuous and has no homoclinic points. Then

(i) ([LMPY], cf.   [N]) iffk(y) <y < f(y) then P = {y,f(y),...,fk-1(y)} is
separated to order one under f;

(ii) ([B3], cf. [N]) in the case above, the separating point z can be chosen so that

f2(z) = zandy£Wu(z,f2);

(iii) ([M], cf. [N]) if any set P is separated to order two, then for each i = 0,1, the

convex hull of Pi contains no fixed point of f.

An immediate consequence of Claim 3 in the proof of Lemma 1 is

REMARK.  Suppose p £ Per(/) has period n and no homoclinic points. If x, y £

Wu(p, fn) lie on the same side of p, then for each k, fk(x) and fk(y) also lie on the

same side of any point in the /-orbit of p.

This is because [x, y] C Wu(p, /") and hence none of its images can hit a point

on the /-orbit of p. Combining the Remark and Lemma 4, we prove

Lemma 5. Fix n > 0. If f: I —► 7 is continuous and has no homoclinic points,

and if x£ Q(/)\Per(/), then
(i) the f-orbit of x is separated to order n under f,

(ii) x £ n(fm), m = 2n.

PROOF. We use induction on n: the inductive step consists of replacing / with

f2. Thus we need only prove the case n = 1.

Note that if a point y with infinite orbit satisfies (i) of Lemma 4 for some A; > 2,

then by (ii) of Lemma 4 the orbit segment up to fk~~1(y) is separated by some z

satisfying f2(z) = z &ndy£ Wu(z, f2). It follows that f(y) £ Wa(z, f2) for i < fc

even and fl(y) £ Wu(f(z), f2) for i < k odd. Since the initial orbit segment is

separated by z, the Remark shows that every even iterate of y lies on the same side

of z as y, and every odd iterate lies on the other side of z. This guarantees that

the whole orbit is separated by z.

Now fix x £ fi(/)\Per(/) and pick y (using Lemma 2) so near x that no fixed

point z of f2 lies between fl(x) and fl(y) for t = 0,1,2, and furthermore fN(y) =

x for some TV 3> 3. We claim some orbit segment of y satisfies the hypothesis of (i)

in Lemma 4.
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Let 2/1 < 2/2 < 2/3 he the distinct points y, f(y) and f2(y); the corresponding

iterates of x are x\ < x2 < x3. Then £i < 2/2 < £3, and we can assume without

loss of generality that f(y2) > y2. Since x belongs to the orbit of y2, so does xi,

and we have

/M(2/2) = xi < 2/2 < /(2/2)

for some M>3. Thus by (i) of Lemma 4 and the argument above, the orbit of y2

(including the orbit of x) is separated to order one under / by a point z for which

f2(z) — z and 2/2 £ Wu(z, f2). Since x2 and 7/2 (by the choice of y) lie on one side

of z and both belong to Wu(z, f2), the Remark gives us that fN(y2) = x2 implies

TV even. But if fN(y) = x, then fN(y2) = x2.

Thus, we have shown that, if xn —► x as in Lemma 2, then every n for which

fn(xn) = x is even. Thus 2: G H(/2). We have thus established the case n = 1

of our lemma, and hence by the induction argument at the beginning, the whole

result.    D

The final step in our argument is

LEMMA 6. If some infinite orbit is separated to all orders under f, then there

exists a sequence of points pn £ Per(/) converging to ç G Per(/).

PROOF. From the Corollary to Lemma 1, we can assume that / has no homoclinic

points.

Let P be the infinite orbit, and Po, Pi the two halves into which it is separated

by z with f(z) = z. By (iii) of Lemma 4, the convex hull Jo of Po contains no fixed

points of /. Since Po is separated to all orders under f2, the convex hull of each

of its halves contains no fixed point of f2. We can pick Ji to be the convex hull of

the half of Po further from z, so that J% contains no fixed points of /.

Proceeding by induction, we find a sequence of nonempty intervals 7¿ with J¿ C

Ji—i so that Ji contains no fixed points of fm, m = 2i~1, but does contain fixed

points for m = 2*. Thus

*^oo == I   I J i

is a nonempty closed interval containing no periodic points, but at least one endpoint

is a limit of periodic points pn £ Jn.    □

PROOF of Theorem. If /: 7 -»■ 7 is continuous and Per(/) is closed, then

by the Corollary, / possesses no homoclinic points. Suppose fi(/) ^ Per(/). Pick

x £ fi(/)\ Per(/). By Lemma 3, x has an infinite orbit. Thus, by Lemma 5 (and

induction on n) the /-orbit of x is separated to all orders. But then by Lemma 6,

Per(/) is not closed.    D
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