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EVERY TWO-GENERATOR KNOT IS PRIME1

F. H. NORWOOD

Abstract.

Theorem. Every two-generator knot is prime.

The proof gives conditions under which a free product with amalgamation cannot

be generated by two elements. An example is given of a composite one-relator link.

Let k be a tame knot in S3. Then the deficiency of w,(53 — k) is one. That is to

say, w,(S3 — k) has a presentation in which the number of generators is one more

than the number of relators, but no presentation in which the number of generators

is two more than the number of relators. Thus, every one-relator knot is a two

generator knot. We prove that every two-generator knot is prime by showing that a

composite-knot group cannot be generated by any two of its elements.

The most common examples of one-relator knots are torus knots and two-bridge

knots. The knot 10m (Rolfsen's table, [3]) is a one-relator knot which is neither a

torus knot nor a two-bridge knot. The knot 946 is a prime knot which is not a

one-relator knot. The link 2^#3, is a composite, one-relator link!

The group of a composite knot can be written as a free product amalgamated over

Z. In 1942, F. W. Levi proved that the minimum number of generators of a free

product is the sum of the corresponding numbers of the free factors, provided this

sum is 2 or infinity. In a remarkable 1943 paper [1], B. H. Neumann proved that this

is true in all other cases as well. Unfortunately, no such simple result is possible for

free products with amalgamation, as the example irx(S3 — 2|#3,) shows. In this

example, the free product of two two-generator groups amalgamated over Z, yields a

two-generator, one-relator group. By contrast, it is easy to show that ^(S3 — 3|#3,),

a free product of two two-generator groups amalgamated over Z, yields a three-

generator, two-relator group.

I would like to thank G. A. Swarup, Jon Simon, and the referee for their

comments and suggestions.

1. Preliminaries. We are in the PL-category; in particular, all knots are tame. In

our proof that the group of a composite knot cannot be a two-generator group, we
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make frequent use of the fact that if x and y generate a group G, and if g is an

element of G, then xg andyg generate G.

We begin by briefly summarizing some properties of a free product with amalga-

mation [4] needed in the sequel. Let A *c B be a. free product with amalgamation.

Then any element of A*CB can be written in normal form xxx2 ■ ■ ■ xnc, where

c G C and the x¡ 's are alternately from A and B and are nontrivial elements of left

transversals for C in A and in B. If x in A *c B has normal form x = xxx2 • ■ • xnc,

then the length of x, written X(x) is n. If xx G A, we say x begins in A and write

x — axb2a3b4 ■ ■ •, where xx = ax, x2 = b2, etc. If xn G A, we say x ends in A and

write x = • • • bn_xanc, where xn_x = bn_x, xn = an. Similarly, x may begin or end in

B. If we write x = axb2 • ■ • an_xbnc, we mean to imply the following: that x begins in

A, that x ends in B, and that the length of x is n.

To multiply two elements x and y in A *c B, we concatenate their normal forms

and then cancel and reduce the resulting word, moving elements of C to the end of

the word, until we obtain a normal form for the product. Suppose x = axb2a3 and

y = a\b'2a'3. Then to find xy we first write axb2a3a\b'2a'3. If a3a\ & C, then a normal

form for xy is xxx2x3x4x5, where xx = ax, x2 = b2, x3 = a3a\, x4 = b'2 and x5 = a'3.

We call this procedure of combining a3a'x into a single symbol, amalgamation. If, on

the other hand, a3a\ is in C, then we have cancellation, and must move a3a\ = c' to

the end of the word.

If x ends in A and y begins in B, then when we form xy we have neither

amalgamation nor cancellation, and X(xy) — X(x) + X(y).

Let x = xx ■ ■ ■ xnc and y = v, • • • ymc'. Suppose xn_j+x ■ ■ ■ x„cyx ■■■yjGC but

xn_jX„_J+x • • • xncyx ■ • •yjyj+x $ C. Then we say that when we multiply x and v,

exactly y letters cancel. Unless the number of letters which cancel is equal to X(x) or

X( y), the cancellation is always followed by an amalgamation. Therefore, if j letters

cancel in xy, and j ¥= X(x), j =£ X(y), then X(xy) = X(x) + X(y) — 2j — 1. If j —

X(x), then X(xy) = X(y) - X(x). If; = X(y), then X(xy) = X(x) - X(y).

We say that A *c B is a nontrivial free product with amalgamation iff neither of the

injections C =* A and C ■* 5 is a surjection.

2. Two-generator knots are prime. Stallings' Theorem 4.3 in [6] implies the

following:

Lemma 1. If n elements generate a free product with amalgamation then there exists

a set of n generators one of which is an element of one of the free factors.

Lemma 2. Let A*CB be nontrivial, with C^l. Suppose that for each x in A*CB

with x not in C, if for some n in Z, x" is in C, then in fact, x" = 1. If A *CB can be

generated by two elements, then there exists a generating pair with normal forms

g, = axb2 ■■■b„candg2 = c'.

There are seven possible normal forms for a word in A*CB: axb2 ■ • • anc,

bxa2 ■ ■ • bnc, axb2 • ■ ■ b„c, bxa2 ■ ■ ■ a„c, ac, be, and c (n > 2). Lemma 1 says that if

two elements generate A *c B we can find a pair of generators one of which has one

of the last three forms on this list.
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Also, we need never use form number four. If one generator has this form, we may

replace it by its inverse, which has the same length and has form number three. And

we need not consider pairs of generators both of which lie in A or both in B, if we

assume A *c B is nontrivial. This leaves the following cases to consider:

(la) {a,b-, ■ ■ ■ a„c, a'c'},
n'k\r¿ k     -fi m(lb) {bxa-, ■ ■ ■ b„c, be},V      / l.    1    2 n I,

(2a) {axb2 ■ ■ • anc, be },

(2b) {bxa2 ■ • • b.c, a'c'},

(3a) {axb2 ■ ■ ■ a„c, c },

(3b) {bxa2 ■ ■ ■ b„c, c'},

(4){axb2 ■■•bnc,a'c'},

(5) [axb2 ■■•bnc, b'c'},

(6){axb2 ■••b„c,c'},

(7) [ac, b'c'}.

We reduce cases 1 and 3 to cases 4, 5 and 6 by conjugation. For example, if we are

given generators with normal form (la), we conjugate by a, to obtain generators

with normal form 4 (after taking the inverse of the first generator.)

Pairs of elements with normal forms 2 or 7 cannot generate. For example, suppose

g, and g2 have form (2a). Then the length of g, is odd, so we can write g, = axb2

• ■ • anc = fmtc, where for j = {-(n — 1) we have /= xxx2 -1- -¿cyrj m = xj+x, and

t = xj+2 ■ • • xn. Now, g, begins and ends in A. Can we have a power of gx which

does not begin and end in AI Suppose for some natural number e we have g\ does

not begin and end in A. Then we must have cancellation, so tcf = k, an element of

C, and gx = f(mk)e~ xmtc. We must have further cancellation, so (mk)e~ xm = K, an

element of C, and the last letter of / must cancel the first letter of / and so on. (Note

that cancellation is the same whether we multiply before or after we commute K to

the end of the word.)

But/and t have the same length, and letters cancel in pairs, so if g x does not begin

in A, then gx is in C and so, by hypothesis, equals 1. A similar argument goes

through for negative powers of gx. We have shown that every power of g, either

begins and ends in A or else equals 1.

Thus when we form words in gx and g2 we get no cancellation, because the powers

of gx begin and end in A while the powers of g2 begin and end in B. Words in g, and

g2 can never equal a non tri vial element of C. By hypothesis, C ¥= I. Therefore g, and

g2 cannot generate.

Cases 4 and 5 also reduce to case 6. For example, suppose g, and g2 are generators

with normal form (4), so gx — axb2 • • • bnc and g2 = a'c'. Since words in these

generators must equal nontrivial elements of C, in some such word b2 must cancel,

and before this can happen ax must cancel. Therefore, for some integer e, we have

ax\a'c')eax = (a\xa'c'ax)e is an element of C. Because we do not want (a'c')e to be

1, this element must not be 1, and so, by hypothesis, a'xxa'c'ax must be in C.

Therefore, if we conjugate gx and g2 by ax and then take the inverse of the first new

generator, we obtain new generators of form (6). Case 5 is similar.

This proves the lemma.
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(We can also show that there is a pair of generators of normal form (6) with the

property that the sum of their lengths is minimal among all pairs of generators.)

Case 6 is the one which actually occurs in the example irx(S3 — 2f#3,) = | a, b, c:

aca = cac, bc = cb\. Let g, = ab and g2 = c. Then gzgigj'gf'gi'gi = b-

Lemma 3. Let A*CB obey the hypotheses of Lemma 2, and the additional hypothesis

that there is some a in A such that for all c in C, C ¥= 1, a'xca is not in C, and there is

some b in B with this same property. Then A*CB is not generated by any two of its

elements.

Assume, by way of contradiction, that g, and g2 generate A *c B. By Lemma 2, we

can take g, = axb2 ■ ■ ■ bnc and g2 = c'.

For any element a of A there is a word in g, and g2 which equals a. In this word,

all of the ¿>,'s must cancel, and so the a,'s and C must generate A. Similarly, the b¡'s

and C must generate B. Therefore there is some a, and some b, such that we never

get an element of C when we conjugate a nontrivial element of C by either.

Therefore, when we form the words gxg{gx, x, y, z integers, ai and bj do not

cancel, and we do not get a word of length 1. If all the letters of g, canceled except

one, we might still get cancellation when we formed longer words, such as

g\lg-ig\g%g\Xg2, but since two letters of gx never cancel, words such as these also

never have length 1. Therefore g, and g2 do not generate. This contradiction proves

the lemma.

Theorem. Every two-generator knot is prime.

The group of a composite knot is a free product amalgamated over Z, so we need

only show that knot groups satisfy the hypotheses of Lemma 3.

Let kx and k2 be nontrivial knots, with fundamental groups A and B. Let C be a

meridianal subgroup of A and let C' be a meridianal subgroup of B. Then C and C

are both isomorphic to Z, and the fundamental group of S3 — kx#k2 is A *c B.

This free product with amalgamation is nontrivial and C is not 1. We now use a

theorem of J. Simon [5], which says that unless a knot is a cable knot no power of an

element not in its peripheral subgroup can be a nontrivial element of its peripheral

subgroup. Since the meridianal subgroup is a direct summand of the peripheral

subgroup, this property extends to meridianal subgroups. Cable knots are prime and

kx#k2 is composite, so this property holds for A *c B.

Given this property and the fact that C = Z, the additional hypothesis of Lemma

3 is equivalent to the assumption that C is not normal in A and C is not normal in B.

The normal closure of a meridianal subgroup in a knot group is the entire group, so

we have this property as well.

Therefore every two-generator knot is prime.
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