DIFFERENTIABILITY OF CONVEX FUNCTIONS AND RYBAKOV'S THEOREM

RUSSELL G. BILYEU AND PAUL W. LEWIS

ABSTRACT. Rybakov proved that if $\mu: \Sigma \to X$ is a countably additive Banach space valued measure on a σ -algebra Σ , then there is an element $x^* \in X^*$ so that $\mu \ll x^*\mu$. In this note, we show that Rybakov's theorem follows essentially from a classical result of Mazur on the Gateaux differentiability of convex functions.

Suppose that (Ω, Σ) is a measurable space, X is a (real) Banach space with dual X^* , and $\mu: \Sigma \to X$ is a countably additive vector valued measure. Let $\operatorname{ca}(\Sigma)$ denote the Banach space $(||\nu|| = |\nu|(\Omega))$ of all countably additive real valued measures defined on Σ . If $\nu, \lambda \in \operatorname{ca}(\Sigma)$, then $D(\nu, \lambda)$ will denote $\lim_{t\to 0} (1/t)(||\nu+t\lambda||-||\nu||)$, provided this limit exists. The one-sided limits will be denoted by $D^+(\nu, \lambda)$ and $D^-(\nu, \lambda)$. Since the norm is a convex function, $D^+(\nu, \lambda) \geq D^-(\nu, \lambda)$; also, $D(\nu, \lambda)$ exists iff $D^+(\nu, \lambda) = -D^+(\nu, -\lambda) = D^-(\nu, \lambda)$.

We begin our demonstration of Rybakov's theorem by showing that if $D(\nu, \lambda)$ exists, then $\lambda \ll \nu$. Write $\lambda = \lambda_a + \lambda_s$, where $\lambda_a \ll |\nu|$ and $|\lambda_s| \perp |\nu|$. Then

$$D^{+}(\nu,\lambda) = \lim_{t \to 0+} (1/t)(||\nu + t\lambda|| - ||\nu||)$$

=
$$\lim_{t \to 0+} (1/t)(||\nu + t\lambda_{a}|| - ||\nu|| + ||t\lambda_{s}||) = D^{+}(\nu,\lambda_{a}) + ||\lambda_{s}||.$$

Similarly, $D^{-}(\nu, \lambda) = \lim_{t \to 0^{-}} (1/t)(||\nu + t\lambda|| - ||\nu||) = D^{-}(\nu, \lambda_{a}) - ||\lambda_{s}||$. If $D(\nu, \lambda)$ exists, then $0 \leq D^{+}(\nu, \lambda_{a}) - D^{-}(\nu, \lambda_{a}) = -2||\lambda_{s}||$. Consequently, $||\lambda_{s}|| = 0$ and $\lambda \ll \mu$.

Next, let (x_n^*) be a sequence of points in the unit ball of X^* so that $\mu \ll \sum_{n=1}^{\infty} (1/2^n) |x_n^*\mu|$ [1; 2, p. 12; 3]. Modifying the outline of Mazur's theorem in [4, p. 450], for $y^* \in X^*$ and $m \in \mathbb{N}$, put $\mathcal{D}(y^*, m) = \{x^* \in X^* : D^+(x^*\mu, y^*\mu) + D^+(x^*\mu, -y^*\mu) < 1/m\}$. Now let $x_0^* \in X^*$ and set $g(t) = ||(x_0^* + ty^*)\mu||$ for $t \in \mathbb{R}$. Thus g is a continuous convex function, and consequently g is differentiable at all but countably many points. But if g is differentiable at t_0 , then $D((x_0^* + t_0y^*)\mu, y^*\mu)$ exists, i.e. $D^+((x_0^* + t_0y^*)\mu, y^*\mu) = -D^+((x_0^* + t_0y^*)\mu, -y^*\mu)$ and $x_0^* + t_0y^* \in \mathcal{D}(y^*, m)$. Therefore $\mathcal{D}(y^*, m)$ is a dense subset of X^* for each $y^* \in X^*$ and each $m \in \mathbb{N}$. Furthermore, the set

$$A_{k} = \{x^{*} \in X^{*} \colon k(||x^{*}\mu + (1/k)y^{*}\mu|| - ||x^{*}\mu|| + ||x^{*}\mu - (1/k)x^{*}\mu|| - ||y^{*}\mu||) < 1/m\}$$

is certainly open for all positive integers k and m. And because of the monotonicity of the difference quotients of a convex function, $\mathcal{D}(y^*, m) = \bigcup_{k=1} A_k$, a dense open set. Consequently, by the Baire category theorem, $\bigcap_{m=1}^{\infty} \mathcal{D}(y^*, m)$ is a dense G_{δ} for each $y^* \in X^*$, and $\mathcal{D}(x^*\mu, y^*\mu)$ exists for each x^* in this intersection. Hence $\mathcal{D} = \bigcap_{m=1}^{\infty} \bigcap_{m=1}^{\infty} \mathcal{D}(x_n^*, m)$ is a dense G_{δ} , and $\mu \ll x^*\mu$ for each $x^* \in \mathcal{D}$.

Received by the editors February 20, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46G10, 28B05; Secondary 46B20.

^{© 1982} American Mathematical Society 0002-9939/81/0000-0205/\$01.75

References

- 1. R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
- 2. J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977.
- 3. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
- 4. S. Mazur, Über konveze Mengen in linearen normierte Räumen, Studia Math. 4 (1933), 70-84.
- 5. V. Rybakov, Theorem of Bartle, Dunford, and Schwartz on vector-valued measures, Mat. Zametki 7 (1970), 247–254.

DEPARTMENT OF MATHEMATICS, NORTH TEXAS STATE UNIVERSITY, DENTON, TEXAS 76203