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SOME REMARKS ON BRAUER'S THIRD MAIN THEOREM

AJRYE JUHÁSZ

ABSTRACT. We consider two classes of p-blocks of a finite group G which

have the property that for every block B of them and every subgroup H of G,

H has only a small number of admissible blocks b with bG = B. In this they

are similar to the principal block of G. These blocks are described by means

of certain modules they contain.

Introduction. Let G be a finite group of order \G\ and x a complex character of

G in a p-block B of G, P | \G\. If u is an element of G of order a power of p and r

is an element of G of order prime to p which commutes with u, then by [3, 1.1]

M x(ur)=E £¿(x,#/>(r)
b€ß<f€[b]

where ß is the set of all the admissible blocks of Cq(u) with bG = B, d(x, <p) the

generalized decomposition numbers and [b] is a basic set for b. (See [3].) Here,

following Brauer [3, 2C], we call a block b of a subgroup H of G admissible if the

centralizer of one of its defect groups is contained in H.

When using (*), one has to have some information on ß. The aim of this work

is to supply sufficient conditions for ß to be "small". A typical result of this kind

is Brauer's Third Main Theorem which states that if B is the principal block of G

and H is any subgroup of G, b an admissible block of H, then bG = B if and only

if b is the principal block of H. For H = Cg(u) this implies, of course, that ß in

(*) consists only of the principal block of H. Later, Brauer showed in [2] that, in

general, blocks which contain a linear representation have a similar property. We

shall describe more cases like this in terms of modular representations:

Call a block B of KG a quasi-principal block if every subgroup of G which has

admissible blocks, has exactly one admissible block b with bG = B. Call B a weak-

principal block if for every subgroup H of G which has admissible blocks and for

every p-subgroup Q of H there is at most one admissible block bot H with bG = B.

In these terms our main results are the following.

Theorem 1. Let B be a block of KG and S a Sylow p-subgroup of G. Assume

that K is a splitting field for the subgroups of G and B contains an indecomposable

KG-module M of K-dimension d<p-l. If (d,\NG(S)/SCG(S)\) = 1 then B is
quasi-principal. Moreover, let H be a subgroup of G which has admissible blocks.

Then H has exactly one admissible block b with bG = B and it contains all the

components of Mh-
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THEOREM 2. Let K be a splitting field for the subgroups of G and let B be a

block of KG with a defect group D. IfB contains an indecomposable KG-module M

such that all the components of Mr)cG(D) belong to the same block b, then bG = B,

DCg(D) contains a Sylow p-subgroup of G andB is weak-principal. If D is a Sylow

p-subgroup of G then B is quasi-principal.

The proof of Theorem 2 provides a sufficient (and necessary) condition for a

block B of KG to be the principal block (Theorem 3). As a corollary we get a

result of Cassey and Gaschiitz [5] concerning certain elementary abelian sections of

G of order a power of p.

In §1 we quote the necessary results and fix the notation. In §2 we investigate

weak-principal blocks while in §3 we deal with quasi-principal blocks.
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1. Notation and preliminary results. In what follows fix the following notation:

G a finite group, H a subgroup of G, S a Sylow p-subgroup of G, K a field of

characteristic p, p | \G\, which is a splitting field for G and its subgroups, B a block

of KG with idempotent E and M an indecomposable KG-xnodule in B. Write

"component" for "indecomposable direct summand" and for every subgroup X of

G and block c of X denote by (c, Mx) the fact that c contains a component of Mx-

Other notation is standard, see [6].

We recall some definitions and results from Brauer 's work [3]. Denote by P the

set of all pairs (Q, b), where Q is a p-subgroup of G and b is a block of QC(Q), with

the defect group Q. Here C(Q) stands for Cg{Q)-
Definition 1.1 [3, 3.1]. Two pairs (P,b*) and (Q,b**) of P are linked if Q is

a normal subgroup of P, Q # P, and if (&')PCW) = (&*»)pc(Q) = bj b a block of

PC(Q).

LEMMA 1.2 [3,3A]. If the pairs (P,b*) and (Q,b**) of P are linked and b =
b*pc™, then

(a) b and b* have the same defect group P.

(b) b and b** have the same corresponding central idempotent e.

(c) CP(Q) Ç Q.

Lemma 1.3. Let B be a block of KG with defect group D and b an admissible

block of H with a defect group Q, Q<D, such that bG = B. Then
(a) [3, J] There is a pair (Q, b) in P with bH = 6 (hence bG = B).
(b) [3,3E, 3F] If(Q, b") G P and b*G has a defect group D with D^Q, then there

exists a p-subgroup PofG with \P :Q]=p and a pair (P, b**) in P such that (Q, b*)

and(P,b**) are linked.

Finally, we recall some results from [8]

Proposition 1.4 [8,3(a)]. IfB has a defect group D then every admissible block

b of H which satisfies bG = B and has a defect group D contains a component of

M„.
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Proposition 1.5 [8, Proposition]. Let D be a p-subgroup of G which is not
normal in any Sylow p-subgroup of G and let H be a normal subgroup of NG(D)

which contains DCg(D) and a Sylow p-subgroup of Ng(D). If B is a block of KG
with defect group D and M is an indecomposable KG-module in B, then Mh has

a component in a block b of KH with bG # B, provided K is a splitting field for

DCG(D).

PROPOSITION 1.6 [10, 1.6(a)]. Let ß be the set of all the defect groups of B and
denote D = {DC\ H\D G ß, CG(D C\H)ÇH). Let Do be the set of all the maximal
elements of D with respect to " <h " • Then

(a) Ifb is an admissible block of H with bG = B then b has a defect group in D ■
(b) For every Q e Do there exists a block b of H with bG = B having defect group

Q-

2. Weak-principal blocks.

LEMMA 2.1. Let B be a block of KG with a defect group D and let b be a block of
DC(D) having defect group D with bG = B. (See Lemma 1.3(a).) Let P be a Sylow

p-subgroup of Ng(D), and assume that b is the only block of DC(D) with bG = B.
Then

(&)P = DCp(D).
(b) D is a Sylow p-subgroup of G if and only if Z(D) is a Sylow p-subgroup of

CG(D).

In particular, if B is weak-principal, then (a) and (b) hold.

PROOF, (a) By [3, 4K] the set of all the blocks bi of DC(D) with bf = B forms
an A^o(£))-conjugacy class of blocks. Therefore, if T(b) = {i€ NG(D)\x~1bx = b),

then \NG(D) : T(b)\ = 1 by assumption, i.e. NG(D) = T(b). On the other hand,

DCp(D) is a Sylow p-subgroup of T(b), by [12]. Thus P = DCP(D).
(b) If D is a Sylow p-subgroup of G then certainly Z(D) is a Sylow p-subgroup

of CG(D).

If Z(D) is a Sylow p-subgroup of CG(D) then P = D by part (a), hence D is the

Sylow p-subgroup of NG(D). Therefore D is a Sylow p-subgroup of G.

Lemma 2.2.   Let D be a defect group of B and set H0 = DC(D).   If all the
components of Mh0 belong to the same block b of Ho, then

(&)bG = B.

(b) DCG(D) contains a Sylow p-subgroup ofG.

(c) For every subgroup Q ofD there is at most one block b ofQC(Q) having defect

group Q and satisfying bG = B. b contains all the components of MqG(q).

PROOF,  (a) Follows by Proposition 1.4.

(b) Follows by Lemma 2.1(a), Propositions 1.4 and 1.5.

(c) By induction on \D : Q\. For \D : Q\ = 1 this is just the assumption, by

Proposition 1.4. Let Q be a proper subgroup of D and assume that b is a block

of QC(Q) with bG = B having defect group Q. Then by Lemma 1.3(b) there is a
subgroup P of D containing Q such that \P :Q]=p and a block b** of PC(P) such

that (Q, b) and (P, b**) are linked. By Lemma 1.2(b) b**G = B and by the induction

hypothesis b** contains all the components of MpG(p)- Let L be a component of

Mpc(Q)- By the induction hypothesis b** contains all the components of LpG(p),
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as L]Mpc(Q)- Since 6 and b** have the same defect group P by Lemma 1.2(a),

L must belong to b by Proposition 1.4. Consequently MpG(Q) belongs to b, hence

Mqc(q) belong to b by Lemma 1.2(b), since Me = M, e as in Lemma 1.2(b). This

obviously proves part (c).

PROPOSITION 2.3. Let B be a block of KG with a defect group D. If D is a
Sylow p-subgroup of G thenB is quasi-principal if and only if B is weak-principal.

PROOF. Let H = {H < G\H has admissible blocks b with bG = B}. If S is
quasi-principal then it is weak-principal, by definition. Let B be a weak-principal

block of KG. Let H G U and assume that b is an admissible block of KH with

bG = B, having a defect group Q. Let S and P be Sylow p-subgroups of G and H

respectively with Q <P < S. We show by induction on \S : Q\ that Q = P. Then

the result follows, since B is weak-principal. For S = Q this is obvious. Assume

that \S : Q\ > 1 and the result holds for every subgroup H* of G and admissible

block b* of H* with b*G = B having defect group Q* ^ Q. By assumption B has

maximal defect, hence by Proposition 1.6 KH has a block b with bG = B having

defect group P. Since Q < P, it follows by Bauer's First Main Theorem that QC(Q)

has blocks ß and ß with ßH = b and ßH = b, respectively. Let H* = NG(Q). Then

b* = ßH' and 6** = ßH" have defect groups > Q by Brauer's First Main Theorem,

hence ßH' = ßH' by the induction hypothesis since B is weak-principal and ßG =

ßG = B. So ß and ß are conjugate in H* hence both have defect group Q. But

then ß = ß, since B is weak-principal and b = ßH = ßH = b. Hence Q = P, and 6

is the only admissible block of H with bG = ¿?.

We now prove the main result of this section.

THEOREM 2. Let K be a splitting field for the subgroups of G and let B be a
block of KG with a defect group D. IfB contains an indecomposable KG-module M

such that all the components of Mdcg(D) belong to the same block b, then bG = B,

DCG(D) contains a Sylow p-subgroup of G andB is weak-principal. If D is a Sylow

p-subgroup of G then B is quasi-principal.

PROOF. bG = B by Lemma 2.2(a), DCG(D) contains a Sylow p-subgroup of

G by Lemma 2.2(b) and B is weak-principal by Lemma 2.2(c). If D is a Sylow

p-subgroup of G then B is quasi-principal by Proposition 2.3.

Corollary 1. Let K be a splitting field for the subgroups of G, B a block of
KG, M an indecomposable KG-module in B and S a Sylow p-subgroup of G. If

all the components of Msc(S) belong to the same block then each of the following

conditions on M implies that B is quasi-principal:

(a) S is contained in the kernel of the representation afforded by M.

(b) M has K-dimension prime to p.

PROOF. In case (a) M has vertex S by [6, 53.8] and in case (b) M has vertex S by

[6, 52.4]. So in both cases B has defect group S. Consequently B is quasi-principal

by Theorem 2.

The proof of Theorem 2 yields

THEOREM 3. Let B be a block of KG and M an indecomposable KG-module in

B. Let D be a defect group of B. Then each one of the following conditions implies

that B is the principal block of KG.
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(a) CG(D) is contained in the kernel of the representation afforded by M.

(b) CG(D) has a normal p-complement T and T is contained in the kernel of the

representation afforded by M.

PROOF.   Note that in Theorem 4 there is no restriction on the field K.

(a) Assume first that if is a splitting field for the subgroups of G. Since CG(D)

acts trivally on M by assumption, M^çd) is the direct sum of trivial one-dimensional

KC(D) modules, hence MC{d) belongs to the principal block of KC(D). On the

other hand, it is elemenary and well known (see e.g. [1, 2.9(1)]) that every central

primitive idempotent of DC(D) lies in C(D) and every central primitive idempotent

of C(D) is a central idempotent of DC(D), as D centralizes C(D). Consequently, the

principal blocks of C(D) and DC(D) have the same idempotent e and so MDG(D)

belongs to the principal block of DC(D), as Me = M. Hence by Theorem 3 and

Brauer's Third Main Theorem (or Theorem 1) M belongs to the principal block of

KG.
Assume now the general case and let K Ç K be a splitting field for the subgroup

of G. Let M®K = Li©- ■ -®Lr, L% indecomposable ./YG-modules. Since CG(D) acts

trivially on the Li,\<i<r,M®K belong to the principal block of KG, by the

above. Assume E <g> 1 = ei H-h et, e¿ central primitive idempotents of KG. Then

(M®l)(E®\) = M®1 implies that (M®l)e¿ # 0 for some i, 1 < i <t. Therefore e¿

is the idempotent of the principal block of KG and moreover (M®K)e, = M®K,

by the above. We want to show that E is the principal block of KG. Let L be

the trivial representation of KG. Then L (g> K is the trivial representation of KG;

hence (L ® K)ei = L®K. Consequently, (L® K)(E ® 1) = L® K. This easily

implies LE = L, i.e. M belongs to the principal block of KG.

(b) By [4 or 11] every idempotent of DC(D) lies in T. Therefore, as in part (a)

Mdc(d) belongs to the principal block of DC(D). The rest is the same as in part

(a).

COROLLARY 2 [5]. LetRi and R2 be two normal p-subgroups of G such that

•Ri Q H2 and R2/Ri is elementary abelian. Then the ZpG-module R2/Ri belongs

to the principal block.

PROOF. Assume first that R2/R1 is indecomposable and belongs to B with

defect group D. Then R2 < D by [3, 2]. Therefore C(D) < C(R2), hence C(D)

is contained in the kernel of the representation afforded by R2/Ri. Consequently

R2/Ri belongs to the principal block of KG, by Theorem 3(a). If R2/Ri decom-

poses, then the same argument for each component of it shows that R2/Ri belongs

to the principal block.

Corollary 3. Let S be a Sylow p-subgroup of G and T a normal p-complement

ofCG(S). Then the principal block of G contains at least ]G : TG'\ linear characters.

PROOF. Every linear character of G which contains G'T in its kernel belongs

to the principal block of KG, by Theorem 3(b). Hence the result follows.

COROLLARY 4. Let D be a normal p-subgroup of G. Then the KG-module

K(G/CG(D)) belongs to the principal block of KG.

PROOF. Every component of K(G/CG(D)) contains CG(D) in its kernel. Since

D is a normal p-subgroup of G, every block of KG has defect group containing

D. Consequently, the centralizer of every defect group is contained in the kernel of

every component of K(G/CG(D)), hence the result follows by Theorem 3(a).
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3. Quasi-principal blocks.

Lemma 3.1. Let B be a block of KG with a defect group D and b an admissible

block of KH. Assume thatB has an indecomposable KG-module M which satisfies

(**) Every component of Md-G(d-) has vertex > D*, for every D* < D.

Then bG = B if and only if b contains a component of Mh

PROOF. Let Li,-..¡Lt be all the components of Mh and let b¿ be the block of

H which contains L¿, bi with defect group £>¿, 1 < i < t. Assume that b has defect

group Dq < D. Then we claim

(1) bf = B for 1 < i < t. (In other words (b, MH) implies bG = B.)

(2) lfD0<lG,H = D0C(D0) and bG = B then b = b* for some », 1 < i < t.

(3) Let ß be a block of D0C(D0) with ßH = b. Then (ßN°(D°), MNg(Do)) implies

b = bi for some i, 1 < i < t, (i.e. (b, Mh))-

Assume we have proved claims (l)-(3). Then in view of (1) it remains only to

show that bG = B implies (b, Mh)- Thus assume bG = B and prove (b, Mh) by

induction on \D : Do].

If D = D0, then our assertion is Proposition 1.4.

Therefore assume Do ^ D and suppose we have proved the assertion for every

subgroup H' and admissible block b' of H with defect group D'0 > D0 and prove

for H and b. Since H is arbitrary, this will do. Let ß be as in (3). Then by

Brauer's First Main Theorem ßNo{D0) jjas a defect group D', strictly containing

Do, as Do # D. Therefore NG(D0) satisfies the induction hypothesis with NG(D0)

in place of H' and ßN°(D°) in place of b', hence (ßN<>lD°), MNg(Do)). By (3) this

proves the lemma. Now we prove claims (l)-(3).

(1) Since every component of MDic(Di) has vertex > D¿, obviously every L¿ has

vertex V¿ > A, hence C(V¿) < C(A) and bG = B by Nagao's theorem [6, 56.5].

(2) All block b' of H with b'G = B are conjugate in G. Since every such b'

contains a component of Mh, every such b' is one of the bi, 1 < i < t.

(3) By (2) (ß, MDoc(Do))- Therefore (6, MH) by (1), as b = ßH. Here we used the

fact that if M satisfies (**) then every component of Mh satisfies it.

We come to the main result of this section:

THEOREM 1. Let B be a block of KG and S a Sylow p-subgroup of G. Assume

that K is a splitting field for the subgroups of G and B contains an indecomposable

KG-module M of K-dimension d<p-l. If (d, \NG(S)/SCG(S)\) = 1 then B is
quasi-principal. Moreover, let H be a subgroup of G which has admissible blocks.

Then H has exactly one admissible block b with bG = B and it contains all the

componéis of Mh-

PROOF. Since dim^cM < p — 1, M and all the components of Mh have vertex

a Sylow p-subgroup of G and H respectively, by [7, 22.6]. Therefore, every block b

of KH with bG = B contains a component of M h by Lemma 3.1 and has maximal

defect by [6, 54.10]. It suffices to show that B is weakly-principal. To this end, we

may assume H = SC(S), S a Sylow p-subgroup of G, by Theorem 2.

Let bi,..., br be all the block of H with bG = B. Then by Lemma 3.1 dim^M =
S¿=i dim^Me¿ where e, is the central idempotent of bi, 1 < i < r. Since dixnpcMei

= dim.KMx~1eiX for every i, 1 < i < r, and every x G NG(S) and since the bi,

l<t'<r, form a NG(S) conjugacy class of blocks of H, d = dim^M = rdimMe¿.

Hence r ] d.   On the other hand, r = ]NG(S) : T(bi)] hence r]]NG(S) : SC(S)].
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Consequently, r\(\NG(S) : SC(S)],d) = 1 and the result follows by Theorem 2. Here

T(bi) = {geNG(S)]g-1big = bi).
The following corollaries are immediate from Theorem 1.

COROLLARY 5 [2,4E, 4D]. IfB contains a linear representation thenB is quasi-

principal.

COROLLARY 6. // NG(S) = SCG(S), then every block B which contains a
representation of degree < p — 1 is quasi-principal.

REMARKS. 1. Lemma 3.1 provides a short module-theoretic proof to Brauer's

Third Main Theorem and to Corollary 1. This proof uses Brauer's First Main

Theorem and Nagao's theorem and does not require that if is a splitting field for

the subgroups of G [9].

2. All the results quoted from [3] have short module-theoretic proofs [10].

3. Theorem 3 for the special case dim M = 1 was proved in [2, 4E]. Also it was

proved there that the exact number of linear characters in the principal block is

\G:TG'\.
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