DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS

ERLING STØRMER

ABSTRACT. It is shown that a positive linear map of a C^* -algebra A into B(H) is decomposable if and only if for all $n \in \mathbb{N}$ whenever (x_{ij}) and (x_{ji}) belong to $M_n(A)^+$ then $(\phi(x_{ij}))$ belongs to $M_n(B(H))^+$.

A positive linear map ϕ of a C*-algebra A into B(H)—the bounded linear operators on a complex Hilbert space H—is said to be decomposable if there are a Hilbert space K, a bounded linear operator v of H into K, and a Jordan homomorphism π of A into B(K) such that $\phi(x) = v^*\pi(x)v$ for all $x \in A$. Such maps have been studied in [2, 3, 5, 7, 8, 9], and are the natural symmetrization of the completely positive ones, defined as those ϕ as above with π a homomorphism. If $M_n(B)$ denotes the $n \times n$ matrices over a subspace B of a C*-algebra and $M_n(B)^+$ the positive part of $M_n(B)$, the celebrated Stinespring theorem [4] states that a map ϕ : $A \to B(H)$ is completely positive if and only if for all $n \in \mathbb{N}$ whenever $(x_{ij}) \in$ $M_n(A)^+$ then $(\phi(x_{ij})) \in M_n(B(H))^+$. It is the purpose of the present note to provide an analogous characterization of decomposable maps.

THEOREM. Let A be a C*-algebra and ϕ a linear map of A into B(H). Then ϕ is decomposable if and only if for all $n \in \mathbb{N}$ whenever (x_{ij}) and (x_{ji}) belong to $M_n(A)^+$ then $(\phi(x_{ij})) \in M_n(B(H))^+$.

PROOF. Suppose ϕ is decomposable, so of the form $v^*\pi v$. If π is a homomorphism (resp. antihomomorphism) and (x_{ij}) (resp. (x_{ji})) belongs to $M_n(A)^+$ then $(\phi(x_{ij})) \in M_n(B(H))^+$. Since every Jordan homomorphism is the sum of a homomorphism and an antihomomorphism [6], if both (x_{ij}) and (x_{ji}) belong to $M_n(A)^+$ then $(\phi(x_{ij})) \in M_n(B(H))^+$.

Conversely suppose (x_{ij}) and $(x_{ji}) \in M_n(A)^+$ implies $(\phi(x_{ij})) \in M_n(B(H))^+$ for all $n \in \mathbb{N}$. Since this property persists when ϕ is extended to the second dual of A we may assume A is unital and that $A \subset B(L)$ for some Hilbert space L. Let t denote the transpose map on B(L) with respect to some orthonormal basis. Let

$$V = \left\{ \begin{pmatrix} x & 0 \\ 0 & x' \end{pmatrix} \in M_2(B(L)) \colon x \in A \right\}.$$

Then V is a selfadjoint subspace of $M_2(B(L))$ containing the identity. Define θ_n on $M_n(B(L))$ by $\theta_n((x_{ij})) = (x'_{ij})$. Then θ is an antiautomorphism of order 2. Hence if

Received by the editors September 25, 1981 and, in revised form, December 4, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L05; Secondary 46L50.

Key words and phrases. Positive maps.

 $(x_{ij}) \in M_n(A)$ then $(x_{ji}) \in M_n(A)^+$ if and only if $(x_{ij}^t) = \theta_n((x_{ji})) \in M_n(B(L))^+$. Therefore both (x_{ij}) and (x_{ji}) belong to $M_n(A)^+$ if and only if

$$\left(\begin{pmatrix} x_{ij} & 0 \\ 0 & x_{ij}^t \end{pmatrix} \right) \in M_n(V)^+.$$

Let $\overline{\phi}$: $V \to B(H)$ be defined by

$$\overline{\phi}\left(\begin{pmatrix} x & 0\\ 0 & x^t \end{pmatrix}\right) = \phi(x).$$

Then $\overline{\phi}$ is completely positive in the sense of [1] by our hypothesis on ϕ and the above equivalence. By Arveson's extension theorem [1, Theorem 1.2.3] $\overline{\phi}$ has an extension to a completely positive map $\overline{\phi}$: $M_2(B(L)) \to B(H)$. By Stinespring's theorem [4] there are a Hilbert space K, a bounded linear map v of H into K, and a representation π_1 of $M_2(B(L))$ on K such that $\overline{\phi} = v^* \pi_1 v$. Let π_2 be the Jordan homomorphism of A into $M_2(B(L))$ defined by

$$\pi_2(x) = \begin{pmatrix} x & 0 \\ 0 & x^t \end{pmatrix}, \quad x \in A.$$

Then $\pi = \pi_1 \circ \pi_2$ is a Jordan homomorphism of A into B(K) such that $\phi(x) = v^* \pi(x)v$ for all $x \in A$, hence ϕ is decomposable. The proof is complete.

The first example of a nondecomposable positive map was exhibited by Choi [2]. An extension of his example was reproduced in [3] together with a complete proof based on nontrivial results on biquadratic forms. We conclude by giving a short proof of his result. The example is $\phi: M_3(\mathbb{C}) \to M_3(\mathbb{C})$ defined by

$$\phi\left(\begin{pmatrix}\alpha_{11} & \alpha_{12} & \alpha_{13}\\ \alpha_{21} & \alpha_{22} & \alpha_{23}\\ \alpha_{31} & \alpha_{32} & \alpha_{33}\end{pmatrix}\right) = \begin{pmatrix}\alpha_{11} & -\alpha_{12} & -\alpha_{13}\\ -\alpha_{21} & \alpha_{22} & -\alpha_{23}\\ -\alpha_{31} & -\alpha_{32} & \alpha_{33}\end{pmatrix} + \mu\begin{pmatrix}\alpha_{33} & 0 & 0\\ 0 & \alpha_{11} & 0\\ 0 & 0 & \alpha_{22}\end{pmatrix},$$

where $\mu \ge 1$. It was shown by Choi that ϕ is positive. We show ϕ is not decomposable. Let $(x_{ij}) \in M_3(M_3(\mathbb{C}))$ be the matrix:

	2μ	0	0	0	2μ	0	0	0	2μ
	0	$4\mu^2$	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	1	0	0	0	0	0
$(x_{ij}) =$	2μ	0	0	0	2μ	0	0	0	2μ
	0	0	0	0	0	4 μ ²	0	0	0
	0	0	0	0	0	0	4μ ²	0	0
	0	0	0	0	0	0	0	1	0
	2μ	0	0	0	2μ	0	0	0	2μ

Then both (x_{ij}) and (x_{ji}) belong to $M_3(M_3(\mathbb{C}))^+$ while it is easily seen that the matrix $(\phi(x_{ij}))$ is not positive. Hence ϕ is not decomposable by the theorem.

ERLING STØRMER

References

1. W. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

2. M. D. Choi, Positive semidefinite biquadratic forms, Linear Algebra and Appl. 12 (1975), 95-100.

3. ____, Some assorted inequalities for positive linear maps on C*-algebras, J. Operator Theory 4 (1980), 271-285.

4. W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

5. E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278.

6. _____, On the Jordan structure of C*-algebras, Trans. Amer. Math. Soc. 120 (1965), 438-447.

7. _____, Decomposition of positive projections on C*-algebras, Math. Ann. 27 (1980), 21-41.

8. S. L. Woronowicz, Nonextendible positive maps, Comm. Math. Phys. 51 (1976), 243-282.

9. _____, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10 (1976), 165-183.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, OSLO, NORWAY