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DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS

ERLING ST0RMER

Abstract. It is shown that a positive linear map of a C*-algebra A into B(H) is

decomposable if and only if for all n G N whenever (x,j) and (*,,) belong to

M„(A)+ then (<¡>(*,7)) belongs to M„(B(H))+ .

A positive linear map <b of a C*-algebra A into B(H)—the bounded linear

operators on a complex Hilbert space H— is said to be decomposable if there are a

Hilbert space K, a bounded linear operator v of H into K, and a Jordan homomor-

phism it of A into B(K) such that <l>(x) = v*ir(x)v for all x G A. Such maps have

been studied in [2, 3, 5, 7, 8, 9], and are the natural symmetrization of the completely

positive ones, defined as those <b as above with m a homomorphism. If Mn(B)

denotes the n X n matrices over a subspace £ of a C*-algebra and Mn(B)+ the

positive part of Mn(B), the celebrated Stinespring theorem [4] states that a map <j>:

A -> B(H) is completely positive if and only if for all n G N whenever (x¡¡) G

Mn(A)+ then («H*,,)) G Mn(B(H))+. It is the purpose of the present note to

provide an analogous characterization of decomposable maps.

Theorem. Let A be a C*-algebra and <b a linear map of A into B(H). Then <¡> is

decomposable if and only if for all n G N whenever (x,¡) and (Xj¡) belong to Mn(A)+

then (<t>(XlJ)) G Mn(B(H))+ .

Proof. Suppose <j> is decomposable, so of the form v*rrv. If n is a homomorphism

(resp. antihomomorphism) and (xi}) (resp. (xj¡)) belongs to Mn(A)+ then (<H*,,))

G Mn(B(H))+ . Since every Jordan homomorphism is the sum of a homomorphism

and an antihomomorphism [6], if both (x¡¡) and (x„) belong to Mn(A)+ then

(*(*„)) G Mn(B(H))+.

Conversely suppose (x¡ ) and (xjt) G Mn(A)+ implies («K-*//)) e Mn(B(H))+ for

all n G N. Since this property persists when <p is extended to the second dual of A we

may assume A is unital and that A C B(L) for some Hilbert space L. Let t denote

the transpose map on B(L) with respect to some orthonormal basis. Let

Then Kis a self adjoint subspace of M2(B(L)) containing the identity. Define 0n on

Mn(B(L)) by 8n((Xjj)) = (xj,). Then 6 is an antiautomorphism of order 2. Hence if
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(x,,) G M„(A) then (*,,) G M„(A)+ if and only if (*?,) = 6n((Xj,))

Therefore both (jc¿ ) and (Xß) belong to Mn(A)+ if and only if

M     GMn(V)+ .

Mn(B(L))+.

0

Let <t>: V -> B(H) be defined by

0 = *(*)■

Then <j> is completely positive in the sense of [1] by our hypothesis on <b and the

above equivalence. By Arveson's extension theorem [1, Theorem 1.2.3] <p has an

extension to a completely positive map ^: M2(B(L)) -» B(H). By Stinespring's

theorem [4] there are a Hilbert space K, a bounded linear map v of H into K, and a

representation ttx of M2(B(L)) on A' such that <£

homomorphism of A into M2(B(L)) defined by

v*trxv. Let 7r2 be the Jordan

ir2(x)
x    0

0     x'
A.

Then w = vt, o 7t2 is a Jordan homomorphism of A into #(/0 such that <f>(x) =

v*tt(x)v for all x G A, hence # is decomposable. The proof is complete.

The first example of a nondecomposable positive map was exhibited by Choi [2].

An extension of his example was reproduced in [3] together with a complete proof

based on nontrivial results on biquadratic forms. We conclude by giving a short

proof of his result. The example is <i>: Af3(C) -» M3(C) defined by

'21

«31

i22 zr *21

-M2

*22

l32

'23 + P

«33/ \

lt?3

0

0

0 \

(22/

where p > 1. It was shown by Choi that d> is positive. We show <¡> is not decomposa-

ble. Let (x¡j) G M3(M3(C)) be the matrix:

(*,/) =

2p

0

0

0

4p2

0

0

0

0

0

0

0

0

0

2/1
0

0

0

0

0

0

0

2jj.

0       2p

0       0

0       0

v
0

0

0 0

1 0

0       2p

Then both (x,7) and (xJt) belong to Af3(Af3(C))+ while it is easily seen that the

matrix (<K*iy)) is not positive. Hence <f> is not decomposable by the theorem.
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